首页|改进YOLOv8的SAR影像船舰目标检测模型

改进YOLOv8的SAR影像船舰目标检测模型

扫码查看
在SAR影像船舰目标检测任务中,受近海岸区域背景复杂和船舰目标多尺度等因素影响,船舰目标在检测过程中出现检测精度不高、漏检的问题.针对上述问题,本文提出了一种基于YOLOv8s改进的SAR影像船舰目标检测模型,并在SSDD和HRSID数据集上进行试验验证,效果优于其他经典算法.
Improving the SAR image ship target detection model of YOLOv8
In the SAR image ship target detection task,due to factors such as complex coastal background and multi-scale ship targets,ship targets may have low detection accuracy and missed detections during the detection process.In response to the above issues,this article proposes an improved SAR image ship target detection model based on YOLOv8s,and conducts experimental verification by SSDD and HRSID datasets,with better performance than other classical algorithms.

ship target detectionSAR imagingresidual enhancementdeformable convolutiondynamic sparse attention

杨明秋、陈国坤、左小清、董燕

展开 >

昆明理工大学国土资源工程学院,云南 昆明 650093

船舰目标检测 SAR影像 残差增强 可变形卷积 动态稀疏注意力

2024

测绘通报
测绘出版社

测绘通报

CSTPCD北大核心
影响因子:1.027
ISSN:0494-0911
年,卷(期):2024.(12)