首页|一种顾及空间异质性和噪声的遥感缺失数据重建方法

一种顾及空间异质性和噪声的遥感缺失数据重建方法

扫码查看
针对光学遥感数据常存在大量缺失数据和噪声,以及现有光学遥感缺失数据重建算法大都未充分顾及地理数据空间相关密切程度的问题,本文充分利用地理空间数据间的时空关联性,提出了一种协同随机森林(RF)和地理加权回归(GWR)的重建方法(RF+GWR),分别以GF-4归一化植被指数(NDVI)、MODIS地表温度(LST)和GF-4反射率数据为试验材料,对RF+GWR方法的普适性和缺失重建性能进行了评估.试验结果表明,在所设不同云量掩膜水平下,相比于KNN和RF,RF+GWR方法在GF-4 NDVI、MODIS LST和GF-4波段反射率缺失数据方面的重建性能均有不同程度的改善,均方根误差、平均绝对误差和决定系数最大提升分别为 33.07%、30.19%和 7.06%.
A reconstruction method for remote sensing missing data considering spatial heterogeneity and noise
In response to the common issue of extensive missing data in optical remote sensing data and the insufficient consideration of the spatial correlation of geographic data in existing algorithms for data reconstruction,this paper fully utilizes the spatio-temporal correlation between geographic spatial data and proposes a reconstruction method that combines random forest(RF)and geographically weighted regression(GWR),termed as RF+GWR.Using normalized difference vegetation index(NDVI)from GF-4,MODIS land surface temperature(LST),and GF-4 reflectance data as experimental materials,the universality and missing data reconstruction performance of the RF+GWR method are evaluated.Experimental results show that,under different cloud masking levels as set in the paper,compared to K-nearest neighbor(KNN)and RF methods,the RF+GWR method exhibits varying degrees of improvement in reconstructing missing data of GF-4 NDVI,MODIS LST,and GF-4 band reflectance data.The maximum improvements in root mean square error,mean absolute error,and coefficient of determination are 33.07%,30.19%,and 7.06%.

optical remote sensingmissing data reconstructiongeographically weighted regressionrandom forestK-nearest neighbor

雷楷烨、张显云、刘晶晖、吴雪

展开 >

贵州大学矿业学院,贵州贵阳 550025

光学遥感 缺失数据重建 地理加权回归 随机森林 K最近邻

2024

测绘通报
测绘出版社

测绘通报

CSTPCD北大核心
影响因子:1.027
ISSN:0494-0911
年,卷(期):2024.(12)