首页|基于深度学习的黄土陷穴易发育区域预测与分析

基于深度学习的黄土陷穴易发育区域预测与分析

Loess sinkholes development regional prediction and analysis based on deep learning

扫码查看
黄土陷穴是黄土高原地区普遍存在的一种特殊的地质灾害,其防治工作是黄土地区工程建设必须要考虑的问题.本文基于修正通用土壤流失模型(RUSLE),从DEM、降水量、地表覆盖、植被指数等多源数据中提取12种不同类型的特征因子,构建卷积神经网络(CNN)和深度神经网络(DNN)两种预测模型,实现对黄土陷穴易发育区域的预测,并对两种模型的预测结果进行对比与分析,从而为黄土地区的陷穴灾害防治、工程建设及水土保持提供参考依据.研究结果表明,CNN、DNN两种预测模型准确率均达80%以上,F1分数均达83%以上,均能有效地预测黄土陷穴的易发育区域.其中,CNN模型准确率达83.25%,F1分数达85.18%,分别比DNN模型高2.63%、1.56%,且该模型泛化能力表现更好,预测结果在细节上也表现更为出色.预测结果表明,黄土陷穴在沟谷区域发育较强,平坦地形发育较弱,人类活动对其发育具有一定影响.
Loess sinkholes are a unique type of geological hazard that is widespread across the Loess Plateau.Their prevention and control are essential considerations in construction projects within this region.Based on a modified RUSLE,this study extracts 12 different types of feature factors from multiple data sources,including DEM,precipitation,surface cover,and vegetation index.Two prediction models,CNN and DNN are constructed to predict areas prone to loess sinkhole development.The results of the two models are compared and analyzed to provide reference for the prevention and control of sinkhole hazards,construction projects,and soil and water conservation in loess areas.The findings show that both the CNN and DNN models achieve an accuracy rate of over 80%and an F1 score of over 83%,indicating their effectiveness in predicting areas prone to loess sinkholes.The CNN model achieves an accuracy of 83.25%and an F1 score of 85.18%,which are 2.63%and 1.56%higher than those of the DNN model,respectively.This demonstrates the superior generalization ability and detailed performance of the CNN model.Analysis of the prediction results indicates that loess sinkholes develop more strongly in valley areas,less so on flat terrain,and are influenced to some extent by human activities.

loess sinkholeregional predictionmulti-source dataCNNDNN

黄骁力、江岭、陈西、位宏、闫振军

展开 >

实景地理环境安徽省重点实验室,安徽滁州 239000

安徽省遥感与地理信息工程研究中心,安徽滁州 239000

安徽地理信息集成应用协同创新中心,安徽滁州 239000

滁州学院地理信息与旅游学院,安徽滁州 239000

展开 >

黄土陷穴 区域预测 多源数据 卷积神经网络 深度神经网络

2024

测绘通报
测绘出版社

测绘通报

CSTPCD北大核心
影响因子:1.027
ISSN:0494-0911
年,卷(期):2024.(12)