首页|结合对象纹理特征和几何特征的农业大棚遥感提取方法

结合对象纹理特征和几何特征的农业大棚遥感提取方法

扫码查看
粮食安全是国家长治久安的根基,高效准确提取耕地范围内的农业大棚信息对于耕地保护、非粮化监管具有重要意义.本文利用高空间分辨率遥感影像覆盖范围广、兼具光谱和纹理信息的优势,针对农业大棚在影像中的特征表现,提出了一种结合基于灰度共生矩阵的纹理特征提取和基于Hough变换直线检测算法的几何特征提取方法,选取宁波市局部地区作为研究区,开展信息提取试验.针对亚米级高空间分辨率遥感影像可实现平均约90%的提取精度,有效降低了光谱反射率差异对识别准确率的影响.相较于基于图像分割的面向对象提取方法和基于深度学习的神经网络提取方法,本文方法具有更高的特征直观性和可理解性,减少了运算复杂度和对样本量级的要求,有助于快速、精准地实现耕地范围内农业大棚的解译与提取.
Greenhouse extraction method using texture and geometric features of remote sensing images
Food security is the foundation for the long-term stability and prosperity of a country.Leveraging the advantages of high spatial resolution remote sensing imagery,which covers a wide range and possesses both spectral and textural information,this paper combines textural feature extraction based on gray-level co-occurrence matrices with geometric feature extraction using the Hough transform line detection algorithm.Focusing on the characteristic manifestations of agricultural greenhouses in the imagery,a local area in Ningbo is selected as the study area to conduct information extraction experiments and validations.For sub-meter high spatial resolution remote sensing imagery,an average extraction accuracy of approximately 90%can be achieved,effectively reducing the impact of spectral reflectance differences on recognition accuracy.Compared to object-oriented extraction methods based on image segmentation and neural network extraction methods based on deep learning,the method proposed in this paper exhibits higher feature intuitiveness and comprehensibility,reduces computational complexity and requirements for sample volume,and is conducive to rapid and accurate interpretation and extraction of agricultural greenhouses within cultivated land areas.

cultivated landgreenhouseremote sensingtexture featuregeometric feature

申佩佩、文学东、朱梦圆

展开 >

宁波市测绘和遥感技术研究院,浙江宁波 315042

宁波市阿拉图数字科技有限公司,浙江宁波 315042

耕地 大棚 遥感 纹理特征 几何特征

2024

测绘通报
测绘出版社

测绘通报

CSTPCD北大核心
影响因子:1.027
ISSN:0494-0911
年,卷(期):2024.(12)