首页|结合K-means聚类的点云区域生长优化快速分割方法

结合K-means聚类的点云区域生长优化快速分割方法

扫码查看
机载LiDAR点云分割是点云数据处理的重要环节.区域生长法是点云分割的经典方法,但该方法通常是以点基元进行生长,在处理数据量较大的点云数据时,由初始种子点选取的不确定性,存在分割速度慢和分割性能不稳定等问题.针对这些问题,本文提出了一种将K-means聚类法与区域生长法结合的点云优化快速分割算法.首先,对点云进行K-means聚类获取对象基元并计算质心点,判断各对象基元质心点是否满足角度和高差阈值,实现基于对象基元质心点的点云滤波;然后,遍历地物对象基元,通过计算对象基元内各点的邻近点的法向量角度和距离,判断其是否满足阈值生长条件,重复迭代直至分割结束;最后,采用3组不同区域的点云数据进行试验分析.试验结果表明,本文方法的分割精度可达到86.19%,相较于传统的K-means聚类法与区域生长法机载LiDAR点云分割的精度有大幅度提升.此外,本文方法相较于传统的区域生长法能够显著提高运算效率.
The optimal segmentation method of point cloud region growth combined with K-means clustering
Point cloud segmentation is an important part of airborne LiDAR point clouds processing.The regional growth method is a traditional classical method of point cloud segmentation,but it usually takes the point as the unit to grow,which leads to the problems of slow segmentation speed and unstable segmentation performance.To solve these problems,this paper proposes a point cloud optimization fast segmentation algorithm combining K-means clustering method and regional growth method.First,K-means clustering is carried out for point cloud to obtain object primitives and calculate centroid points,judge whether the centroid points of each object element meet the angle and height difference threshold,and realize point cloud filtering based on centroid points.Then,the ground object primitives are traversed,and the normal vector angle and distance are calculated for the adjacent points within the object primitives to determine whether they meet the growth conditions of the regional growth threshold.The iteration is repeated until the end of the segmentation.Three groups of point cloud data from different regions are used for experimental analysis.The experimental results shows that the segmentation accuracy of this method could reach 86.19%,which is greatly improved compared with the traditional K-means clustering method and regional growth method airborne LiDAR point cloud segmentation accuracy.In addition,this method can significantly improve the computational efficiency compared with the traditional regional growth method.

airborne LiDARpoint cloud segmentationobject primitiveK-means clusteringregional growth

涂梨平、惠振阳、范军林、刘飞鹏、惠婷、毛亚琴

展开 >

江西农业大学,江西 南昌 330038

江西省核工业地质调查院,江西 南昌 330038

东华理工大学,江西南昌 330013

广东农工商职业技术学院,广东 广州 510507

展开 >

机载LiDAR 点云分割 对象基元 K-means聚类 区域生长

2024

测绘通报
测绘出版社

测绘通报

CSTPCD北大核心
影响因子:1.027
ISSN:0494-0911
年,卷(期):2024.(12)