首页|基于Attention-LSTM的短期电力负荷预测

基于Attention-LSTM的短期电力负荷预测

扫码查看
电力负荷预测的准确性受到多种因素的干扰,如气候变化、经济发展以及区域差异等,这些因素使得电力负荷呈现出显著的不稳定性和复杂的非线性特征,从而增加了提高预测精度的难度。为了应对这一挑战,本文创新性地引入了一种结合自注意力机制与长短期记忆网络(LSTM)的预测方法。通过在美国某一地区的实际用电负荷数据验证模型,实验结果表明,该方法的决定系数(R2)为 0。96,平均绝对误差(MAE)为 0。023,均方根误差(RMSE)为 0。029,提升了预测的准确性。这不仅证明了所提模型在提高电力负荷预测精度方面的有效性,也为其在船舶电力负荷预测的应用奠定了一定的基础。
Short-term power load forecasting based on Attention-LSTM
The accuracy of power load forecasting is interfered by many factors,such as climate change,economic development and regional differences,which make the power load present significant instability and complex nonlinear characteristics,thus increasing the difficulty of improving the forecasting accuracy.To address this challenge,this paper innovatively introduces a prediction method that combines self-attention mechanism with Long Short-term Memory Network(LSTM).The experimental results show that the coefficient of determination(R2)of this method is 0.96,the Mean Absolute Error(MAE)is 0.023,and the Root Mean Square Error(RMSE)is 0.029,which significantly improves the accuracy of prediction.This not only proves the effectiveness of the proposed model in improving the accuracy of power load forecasting,but also lays a certain foundation for its application in power load forecasting for ships.

short-term power load forecastinglong short-term memory networksself-attention mechanismpredictive accuracymodel generalisation capabilities

李璨、伍黎艳、赵威、李晟、曾加贝、苏旨音、曾进辉

展开 >

株洲电力勘测设计科研有限公司,湖南 株洲 412000

湖南工业大学电气与信息工程学院,湖南 株洲 412007

短期电力负荷预测 长短期记忆网络 自注意力机制 预测精度 模型泛化能力

2025

船电技术
武汉船用电力推进装置研究所 中国造船学会船舶轮机学术委员会

船电技术

影响因子:0.143
ISSN:1003-4862
年,卷(期):2025.45(1)