首页|基于R2AU-Net的InSAR相位解缠方法

基于R2AU-Net的InSAR相位解缠方法

扫码查看
InSAR相位解缠的质量直接影响地形高程或地表形变的反演精度.传统的基于非机器学习模型的相位解缠方法(如基于路径跟踪或最小范数)在低相干性或相位梯度较大(干涉条纹密集)的区域难以获得正确解缠结果.深度神经网络算法在非线性表示和特征表达能力方面具有独特优势,被广泛应用于数字图像处理研究中,InSAR相位解缠可视为图像回归.本文提出基于R2AU-Net深度神经网络的InSAR相位解缠方法.首先,基于数学分形法模拟成对的缠绕和解缠相位,避免了外部DEM合成相位时引入的固有误差和残缺问题,保持了地貌特征的多样性及复杂性,得到模型训练所需的数据集.然后,基于传统的U-Net模型构建R2AU-Net相位解缠模型,该模型结合注意力机制增强了模型对于卷积特征筛选能力,提高了在低相干或条纹密集区域的解缠性能;使用循环残差卷积结构,避免了梯度消失问题,增强了模型特征表示能力.最后,利用模拟和真实数据进行试验分析,结果表明本文提出的R2AU-Net相位解缠模型能够更有效地保留地形高程或真实地表形变信息,提高了解缠结果的可靠性,在性能表现上优于Goldstein枝切法、SNAPHU方法及CNN和U-Net相位解缠模型.
An InSAR phase unwrapping method based on R2AU-Net
The accuracy of terrain elevation or surface deformation retrieval relies heavily on the quality of InSAR phase un-wrapping.Conventional phase unwrapping techniques,rooted in non-machine learning models(such as path-following or mini-mum norm),face challenges in producing accurate unwrapping outcomes within areas of low coherence or high phase gradients(dense interference fringes).Deep neural network models offer distinct advantages in nonlinear representation and feature ex-pression,widely employed in digital image processing research,wherein InSAR phase unwrapping parallels image regression.This paper presents an InSAR phase unwrapping approach utilizing the R2 AU-net.Initially,pairs of wrapped and unwrapped phases are simulated through mathematical fractal methods,circumventing inherent errors and artifacts introduced by integra-ting external DEMs into the phase.This approach maintains terrain feature diversity and complexity while providing the requi-site dataset for model training.Subsequently,the R2AU-net phase unwrapping model,built upon the foundational U-net mod-el,incorporates attention mechanisms to augment the model's convolutional feature selection capacity,thereby improving un-wrapping performance in regions of low coherence or dense striping.The utilization of recurrent residual convolutional struc-tures addresses the vanishing gradient issue,enhancing the model's feature representation capability.Ultimately,experimental analyses are conducted using both simulated and real data.The results demonstrate that the proposed R2AU-net phase unwrap-ping model effectively retains terrain elevation or real surface deformation information,thereby bolstering the reliability of un-wrapping outcomes.In terms of performance,it surpasses established methods such as the Goldstein branch-cut method,SNAPHU method,as well as CNN and U-Net phase unwrapping models.

InSARphase unwrappingdeep neural networkU-Netsurface deformation

何毅、杨旺、朱庆

展开 >

兰州交通大学测绘与地理信息学院,甘肃兰州 730070

地理国情监测技术应用国家地方联合工程研究中心,甘肃兰州 730070

甘肃省地理国情监测工程实验室,甘肃兰州 730070

西南交通大学地球科学与环境工程学院,四川 成都 611756

展开 >

InSAR 相位解缠 深度神经网络 U-Net 地表形变

国家自然科学基金甘肃省杰出青年基金

4220145923JRRA881

2024

测绘学报
中国测绘学会

测绘学报

CSTPCD北大核心
影响因子:1.602
ISSN:1001-1595
年,卷(期):2024.53(3)
  • 28