首页|面向多源异质遥感影像地物分类的自监督预训练方法

面向多源异质遥感影像地物分类的自监督预训练方法

扫码查看
近年来,深度学习改变了遥感图像处理的方法.由于标注高质量样本费时费力,标签样本数量不足的现实问题会严重影响深层神经网络模型的性能.为解决这一突出矛盾,本文提出了用于多源异质遥感影像地物分类的自监督预训练和微调分类方案,旨在缓解模型对于标签样本的严重依赖.具体来讲,生成式自监督学习模型由非对称的编码器-解码器结构组成,其中深度编码器从多源遥感数据中学习高阶关键特征,任务特定的解码器用于重建原始遥感影像.为提升特性表示能力,交叉注意力机制模型用于融合异源特征中的信息,进而从多源异质遥感影像中学习更多的互补信息.在微调分类阶段,预训练好的编码器作为无监督特征提取器,基于Transformer结构的轻量级分类器将学习到的特征与光谱信息结合并用于地物分类.这种自监督预训练方案能够从多源异质遥感影像中学习到刻画原始数据的高级关键特征,并且此过程不需要任何人工标注信息,从而缓解了对标签样本的依赖.与现有的分类范式相比,本文提出的自监督预训练和微调方案在多源遥感影像地物分类中能够取得更优的分类结果.
A self-supervised pre-training scheme for multi-source heterogeneous re-mote sensing image land cover classification
Deep learning has revolutionized the remote sensing image processing techniques over the past few years.Neverthe-less,it is laborious to annotate high quality samples,thus limiting the performance of deep networks because of insufficient su-pervision information.To resolve this contradiction,we investigate the self-supervised pre-training and fine-tuning paradigm for multi-source heterogeneous remote sensing image land cover classification,aiming to relieve the urgent need for manually annotated data.Specifically,the proposed generative feature learning model consists of asymmetric encoder-decoder structure,in which the deep encoder extracts high-level key characteristics contained in multi-source data and task-specific lightweight de-coders are developed to reconstruct original data.To further improve the feature representation capability,the cross-attention layers are utilized to exchange information contained in heterogeneous characteristics,thus learning more complementary infor-mation from multi-source remote sensing data.In fine-tuning stage,the trained encoder is employed as unsupervised feature extractor,and learned features are utilized for land cover classification through the designed lightweight Transformer based classifier.This self-supervised pre-training architecture is capable of learning high-level key features from multi-source hetero-genous remote sensing images,and this process does not require any labeled information,thus relieving the urgent need for la-beled samples.Compared with existing classification paradigms,the proposed multimodal self-supervised pre-training and fine-tuning scheme achieves superior performance for remote sensing image classification.

remote sensingmulti-source heterogeneous datapre-trainingself-supervised learningland cover classification

薛志祥、余旭初、刘景正、杨国鹏、刘冰、余岸竹、周嘉男、金上鸿

展开 >

信息工程大学,河南郑州 450001

北京航空气象研究所,北京 100085

华北水利水电大学,河南郑州 450046

93110 部队,北京 100843

93116部队,辽宁沈阳 110000

展开 >

遥感 多源异质数据 预训练 自监督学习 土地覆盖分类

河南省自然科学基金

222300420387

2024

测绘学报
中国测绘学会

测绘学报

CSTPCD北大核心
影响因子:1.602
ISSN:1001-1595
年,卷(期):2024.53(3)
  • 39