首页|多模态遥感图像模板匹配Log-Gabor滤波方法

多模态遥感图像模板匹配Log-Gabor滤波方法

扫码查看
针对多模态遥感图像匹配难的问题,本文提出了一种基于Log-Gabor滤波的高精度匹配方法.该方法采用由粗到细的多层级密集匹配框架,无须进行特征点检测,避开了多模态图像特征点检测重复率低的问题,能够提取大量高精度匹配点对.本文方法主要分为两步:首先,利用多尺度多角度Log-Gabor滤波器构建对图像间非线性辐射差异稳健的特征金字塔;然后,利用粗尺度的底层特征图进行密集模板匹配,提取大量粗粒度的特征匹配点对,在此基础上再利用特征金字塔,实现粗匹配点自下而上的逐层优化,完成高精度特征匹配点对的提取.同时,针对模板匹配滑窗运算效率不高的问题,提出了 一种密集模板匹配的快速实现方式,有效减少了密集模板匹配的运算时间.本文使用多组不同模态的遥感图像进行试验,结果表明,本文方法能够克服图像间非线性辐射差异的影响,在正确匹配数目、匹配准确率与匹配精度上均优于现有多模态图像特征匹配方法.
Log-Gabor filter-based high-precision multi-modal remote sensing image matching
A feature matching method based on Log-Gabor filtering is proposed to address the problem of high-precision matc-hing for multimodal remote sensing images.The method adopts a multi-scale dense matching framework via a coarse-to-fine manner,which avoids the low repeatability problem of feature detectors in multimodal images and is able to extract a large number of accurate correspondences.The method consists of two main steps:first,a feature pyramid robust to non-linear ra-diometric differences between images is constructed using multi-scale multi-angle Log-Gabor filters;then,the coarse feature map is used for dense template matching to extract a large number of coarse feature correspondences;the feature pyramid is then used to achieve bottom-up refinement of coarse correspondences layer by layer.Furthermore,to address the problem of inefficient sliding window operation for template matching,a fast implementation method of dense template matching is pro-posed,which effectively reduces the running time of dense template matching.The results show that the proposed method can overcome the influence of non-linear radiation differences between images,and outperforms existing multimodal image feature matching methods in terms of the number of correct matches,matching accuracy and matching precision.

multi-modal remote sensing imagefeature matchingLog-Gabor filtertemplate matchingnonlinear radiation difference

曹帆之、石添鑫、韩开杨、汪璞、安玮

展开 >

国防科技大学电子科学学院,湖南长沙 410000

多模态遥感图像 特征匹配 Log-Gabor滤波 模板匹配 非线性辐射差异

2024

测绘学报
中国测绘学会

测绘学报

CSTPCD北大核心
影响因子:1.602
ISSN:1001-1595
年,卷(期):2024.53(3)
  • 26