首页|高效通信的在轨分布式高光谱图像处理

高效通信的在轨分布式高光谱图像处理

扫码查看
随着在轨遥感卫星数量的增加及高光谱成像技术的进步,能够获取到的高光谱数据量急剧增长,人类步入了大数据应用和数据驱动的科学发现时代.然而,如此大体量、大幅宽的高光谱数据导致了深度学习算法难以在单节点上学习和推理,为实时高效的信息智能解译带来了极大的挑战.因此,需要综合多星资源分布式协同解析,以解决分块处理带来的块效应.然而,协同处理必然伴随着信息的交互与传输,为进一步降低传输信息量,需要对梯度进行压缩,以缓解分布式学习中的通信瓶颈.本文综合探讨了多种主流的高效通信梯度压缩算法,特别关注其在通信受限的在轨环境下的优劣,并展望了梯度压缩的发展趋势.通过广泛的试验对比,本文全面评估了多种梯度压缩方法在高光谱图像处理中的表现,试验证明不同方法的适用性和性能差异,为未来在实际应用中选择最合适的梯度压缩方法提供了有力的参考.
Efficient-communication on-orbit distributed hyperspectral image pro-cessing
In recent years,with the increase in the number of on-orbit remote sensing satellites and advancements in hyperspec-tral imaging technology,there has been a sharp rise in the volume of available hyperspectral data,marking an era of big data applications and data-driven scientific discoveries.However,this substantial and wide-ranging volume of hyperspectral data po-ses significant challenges for deep learning algorithms to learn and infer on a single node,hindering real-time and efficient intel-ligent interpretation of information.Therefore,there is a need for comprehensive multi-satellite resource distributed coopera-tive analysis to address the block effects caused by block processing.However,collaborative processing inherently involves in-formation interaction and transmission,necessitating gradient compression to reduce the transmitted information further,thereby alleviating communication bottlenecks in distributed learning.This paper comprehensively discusses various main-stream efficient communication gradient compression algorithms,specifically focusing on their pros and cons in communication-constrained on-orbit environments,and provides insights into the developmental trends of gradient compression.Through ex-tensive experimental comparisons,we comprehensively evaluate the performance of various gradient compression methods in hyperspectral image processing.These experiments demonstrate the applicability and performance differences of different methods,providing robust references for selecting the most suitable gradient compression methods in practical applications in the future.

distributed learninggradient compressionefficient-communicationhyperspectral imageon-orbit processing

谢卫莹、王子璇、李云松

展开 >

西安电子科技大学空天地一体化综合业务网全国重点实验室,陕西西安 710071

分布式学习 梯度压缩 高效通信 高光谱图像 在轨处理

国家重点研发计划国家自然科学基金国家自然科学基金

2023YFE02081006232211762371365

2024

测绘学报
中国测绘学会

测绘学报

CSTPCD北大核心
影响因子:1.602
ISSN:1001-1595
年,卷(期):2024.53(4)
  • 45