首页|分布式散射体相位估计奇异值分解法

分布式散射体相位估计奇异值分解法

扫码查看
常规的分布式散射体(DS)相位估计方法需要生成全组合干涉对以构建样本协方差矩阵(SCM),然后根据SCM的统计特性估计DS相位,这一过程不但计算耗时,而且占据大量存储空间.本文提出了一种基于奇异值分解技术的DS相位快速估计方法(SVDI).该方法分析的对象是单主影像干涉对组成的干涉相位矩阵而非全组合干涉对组成的SCM,因而可以有效提高计算效率、节省存储空间.并且,理论上证明了在一定条件下SVDI的结果与常规的特征值分解方法(EVD)是一致的.模拟数据和真实SAR数据的结果表明,SVDI算法有更高的计算效率,并且其相位估计精度以及形变解算精度与常规算法是一致的.
Phase estimation of distributed scatterer based on singular value decom-position
The covariance matrix is the basis for estimating the phase of distributed scatterer(DS)when using conventional al-gorithm.Therefore,a full combination of SAR data should be generated firstly to construct the sample covariance matrix(SCM).However,this process is not only computationally expensive but also consumes a large amount of storage space.In this paper,a fast algorithm,referred to as SVDI(SVD to interferometric phase matrix),for estimating the phase of DS based on singular value decomposition is proposed.SVDI estimates the phase of DS from the interferometric phase matrix constructed by single-master interferograms rather than the SCM constructed by multi-master interferograms(i.e.,the full combination of SAR data).Therefore,SVDI can effectively improve the computationally efficient and save the storage space.Moreover,it is theoretically proved that the results of SVDI are consistent with the conventional eigenvalue decomposition(EVD)method based on an assumption.The simulated and real SAR data is used to verify the feasibility and reliability of SVDI.The experi-mental results show that the phase and deformation estimation accuracy of SVDI is consistent with that of the conventional method.

distributed scattererphase estimationsample covariance matrixeigen value decompositionsingular value de-composition

祝传广、张继贤、龙四春、杨容华、吴文豪、张立亚

展开 >

湖南科技大学地球科学与空间信息工程学院,湖南湘潭 411201

莫干山地信实验室,浙江湖州 313299

国家基础地理信息中心,北京 100830

分布式散射体 相位估计 样本协方差矩阵 特征值分解 奇异值分解

湖南省自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金

2023JJ30240419013734200400642377453

2024

测绘学报
中国测绘学会

测绘学报

CSTPCD北大核心
影响因子:1.602
ISSN:1001-1595
年,卷(期):2024.53(7)
  • 4