首页|融合星载GNSS-R数据和多变量参数全球海洋有效波高深度学习反演法

融合星载GNSS-R数据和多变量参数全球海洋有效波高深度学习反演法

扫码查看
星载GNSS-R作为一种新兴的观测方法,最近被应用于有效波高反演.现有研究通常使用从延迟多普勒图中提取的特征值以构建经验地球物理模型函数反演SWH.然而,使用多个变量参数作为模型输入具有很大挑战.为此,本文提出了 一个融合星载GNSS-R数据和多变量参数反演全球海面SWH的深度学习网络模型(GloWH-Net).为了验证本文模型的性能,ERA5、WaveWatch Ⅲ和AVISO SWH数据被用作广泛测试的参考数据,以评估GloWH-Net模型和先前模型(即经验模型和机器学习模型)的SWH反演性能.结果表明,当分别使用ERA5、WaveWatch Ⅲ和AVISO SWH作为参考值时,所提的GloWH-Net模型反演SWH的均方根误差分别为0.330、0.393和0.433 m,相关系数分别为0.91、0.89和0.84.相比基于最小方差估计器的经验组合模型反演SWH的均方根误差分别降低了 53.45%、48.06%和40.63%;相比袋装树机器学习模型反演SWH的均方根误差分别降低了 21.92%、18.72%和4.47%.表明了本文方法在反演全球海面SWH方面具有显著优势.
Deep learning retrieval method for global ocean significant wave height by integrating spaceborne GNSS-R data and multivariable parameters
Global navigation satellite system-reflectometry(GNSS-R),as an emerging observation method,has recently been applied to the retrieval of significant wave height(SWH).Existing studies typically use extracting features from delay Doppler maps(DDMs)to construct empirical geophysical model functions(GMFs)for SWH retrieval.However,using multiple varia-ble parameters as model inputs poses significant challenges.Therefore,this article proposes a deep learning network model(named GloWH-Net)that integrates spaceborne GNSS-R data and multivariate parameters to invert global sea surface SWH.To verify the performance of the proposed model,ERA5,Wavewatch Ⅲ(WW3),and AVISO SWH data were used as refer-ence data for extensive testing to evaluate the SWH retrieval performance of the GloWH-Net model and previous models(i.e.empirical and machine learning models).The results showed that when ERA5,WW3,and AVISO SWH were used as refer-ence data respectively,the root mean square error(RMSE)of the proposed GloWH-Net model for retrieving SWH were 0.330 m,0.393 m,and 0.433 m,respectively,the correlation coefficients(CC)were 0.91,0.89,and 0.84,respectively.Compared with the empirical combination model based on the minimum variance estimator(MVE),the RMSE of SWH retrieval is re-duced by 53.45%,48.06%,and 40.63%,respectively;Compared to bagging tree(BT)machine learning model,the RMSE of SWH retrieval decreased by 21.92%,18.72%,and 4.47%,respectively.This indicates that the deep learning method pro-posed in this article has significant advantages in retrieving global sea surface SWH.

global navigation satellite system-reflectometrydelay Doppler mapsocean significant wave heightempirical modeldeep learning model

布金伟、余科根、汪秋兰、李玲惠、刘馨雨、左小清、常军

展开 >

昆明理工大学国土资源工程学院,云南昆明 650093

中国矿业大学环境与测绘学院,江苏徐州 221116

自然资源部第一大地测量队,陕西西安 710054

GNSS-R 延迟多普勒图 海洋有效波高 经验模型 深度学习模型

云南省基础研究计划项目昆明理工大学高层次人才平台建设项目国家自然科学基金国家自然科学基金云南省大学生创新训练计划项目

202401CF070151202300414217402242161067S202310674221

2024

测绘学报
中国测绘学会

测绘学报

CSTPCD北大核心
影响因子:1.602
ISSN:1001-1595
年,卷(期):2024.53(7)
  • 7