首页|一种基于分割掩码的隧道裂缝病害自动识别后处理算法

一种基于分割掩码的隧道裂缝病害自动识别后处理算法

扫码查看
随着交通运输网络的建设,建成的隧道数量及隧道运营年限日益增加,给隧道安全运营带来了很大的挑战.快速检测隧道衬砌裂缝病害并准确提取裂缝长宽特征,是实现隧道高效养护和安全运营的重要保障.本文提出了 一种高效精准的隧道裂缝病害后处理算法,基于DeepLabV3+语义分割模型的预测分割掩码,以连通域判别细化算法与端点聚类实例区分算法处理掩码断裂情况,实现了隧道裂缝骨架精准提取和实例区分.以长度计算和灰度差异值宽度分类算法实现了裂缝长宽特征的计算,长宽计算准确率分别为92.2%与 86.3%.
A post-processing algorithm for automatic recognition of tunnel crack diseases based on segmentation masks
With the construction of transportation networks,the number of completed tunnels and the increasing service life of tunnels have brought great challenges to the safe operation of tunnels.Rapid detection of tunnel lining cracks and accurate ex-traction of crack length and width characteristics is an important guarantee for achieving efficient maintenance and safe opera-tion of tunnel.This article proposes an efficient and accurate post-processing algorithm for tunnel crack diseases,based on the prediction segmentation mask of DeepLabV3+semantic segmentation model.The connected domain discrimination refinement algorithm and endpoint clustering instance differentiation algorithm are used to process the mask fracture situation,achieving accurate extraction of tunnel crack skeleton and instance differentiation.Finally,the length calculation and grayscale difference value width classification algorithm are used to calculate the crack length and width characteristics.The accuracy of length and width calculation is 92.2%and 86.3%,respectively.

crack diseasesemantic segmentationintelligent computingDeepLabV3+

胡波、陈翰新、任松、屈英豪、刘清屹、涂歆玥、王大涛

展开 >

重庆市测绘科学技术研究院,重庆 401120

自然资源部智能城市时空信息与装备工程技术创新中心,重庆 401120

重庆大学煤矿灾害动力学与控制国家重点实验室,重庆 400044

裂缝病害 语义分割 智能计算 DeepLabV3+

重庆市自然科学基金面上项目重庆市自然科学基金创新发展联合基金项目重庆市规划和自然资源局科研项目

CSTB2022NSCQ-MSX1615CSTB2023NSCQ-LZX0122KJ-2021054

2024

测绘学报
中国测绘学会

测绘学报

CSTPCD北大核心
影响因子:1.602
ISSN:1001-1595
年,卷(期):2024.53(9)
  • 14