首页|面向行人导航意图探测的脑电分类研究

面向行人导航意图探测的脑电分类研究

扫码查看
行人导航意图的自动识别是行人导航研究的一个难点问题,对建立智慧导航服务与新型的人机交互方式至关重要.目前,利用行为模式推估导航意图成为主流的解决方案,但是,这种方案依赖多种传感器且具有时滞性.本文提出了一种基于脑成像技术的行人导航意图探测方法,通过多导联的、高时间分辨率的脑电信号解译行人的转向意图.首先,在处于道路交叉口的场景下,依照标准的运动想象范式采集得到4类导航意图对应的脑电原始数据,包括直行、停止、左转和右转;然后,融合脑电在时频域、空间域与功能连接上的特征,构建表达脑电活动过程的脑电时空连接网络,便于捕获与导航意图高度相关的脑电特征;最后,采用图卷积神经网络编码脑电时空连接网络,完成由脑电到4类导航意图的映射,并利用9个被试者的脑电数据作为样本集对本文方法的有效性进行验证.试验结果表明,采用短时窗(1 s)探测4类导航意图的平均精度为0.443±0.062,最高精度可达0.571.采用长时窗(6 s)探测4类导航意图的平均精度为0.525 士0.084,最高精度可达0.665.该方法的探测精度略优于其他脑电解译算法,且对前进和停止意图的识别能力优秀,最高可达0.740和0.700.
Detecting pedestrian intention using EEG signals in navigation
The automatic recognition of pedestrian intentions is a difficult issue in location-based services,which is crucial for establishing intelligent navigation services and new human-computer interaction method.Currently,using behavior patterns to estimate pedestrian intentions has become a mainstream solution,but this approach relies on multiple sensors and has time de-lays.This article proposes a pedestrian intention detection method based on brain imaging technology,which interprets pedes-trian turning intentions through multi-channel,high-resolution EEG signals.Firstly,according to the standard motor imagery paradigm,EEG samples corresponding to four types of intentions within road intersection scenes were collected,including straight ahead,stop,left turn,and right turn.Then,by fusing the features of EEG in time-frequency domain,spatial domain,and functional connectivity domain,the spatiotemporal functional connectivity networks(STFCNs)of EEG are constructed to express the process of EEG activity,facilitating the capture of EEG features highly related to the intent.Finally,a graph conv-olutional neural network was used to encode the STFCNs,completing the mapping from EEG to four types of navigation inten-tions.The experimental results show that the average accuracy(F1 score)of detecting four types of intentions using a short time window(1s)is 0.443±0.062,and the highest accuracy can reach 0.571.The average accuracy with a long time window(6 s)is 0.525±0.084,and the highest accuracy is 0.665.The detection accuracy of this method is slightly better than other classification algorithms,and its detection ability for forward and stop intentions is excellent,up to 0.740 and 0.700.

pedestrian navigationintention detectionEEGGCN

方志祥、王禄斌

展开 >

武汉大学测绘遥感信息工程国家重点实验室,湖北武汉 430079

行人导航 导航意图识别 EEG GCN

国家自然科学基金面上项目

42371411

2024

测绘学报
中国测绘学会

测绘学报

CSTPCD北大核心
影响因子:1.602
ISSN:1001-1595
年,卷(期):2024.53(9)
  • 8