首页|融合全局和局部特征的建筑物形状智能分类方法

融合全局和局部特征的建筑物形状智能分类方法

扫码查看
深度学习方法支持下的建筑物形状认知成为地图制图等领域研究的热点,利用深度学习的特征挖掘能力,可以提取形状的嵌入表示,支撑制图综合、空间查询等应用场景.本文以建筑物数据为例,构建了一种融合全局特征和图节点特征的建筑物形状分类的图谱卷积神经网络模型.首先,在建筑物加权图基础上分别以建筑物4个宏观形状特征、边界顶点的多阶局部和区域结构特征生成形状的融合描述;然后,利用图谱卷积神经网络提取多层次形状信息,通过融合不同层的图表示结果生成特征编码用于形状分类.试验结果表明,相较对比方法,本文方法能够更有效地区分不同建筑物的形状类别,且生成的特征编码具有良好的形状区分度.
An intelligent classification method for building shape based on fusion of global and local features
Supported by deep learning methods for building shape cognition,it has become a hot research topic in fields such as cartography.The feature mining ability of deep learning can help extract embedded representations of shapes,supporting appli-cation scenarios such as cartographic generalization and spatial retrieval.A graph convolutional neural network model for build-ing shape classification that integrates global features and graph node features is constructed,and validated using building data as an example.Firstly,a weighted building graph is constructed,and then a fusion description of the shape is generated based on the 4 macroscopic shape features of building and the multi-level local and regional structural features of boundary vertice.Graph convolutional neural networks are used to extract multi-level shape information,and the feature coding generated by fu-sing graph representations from different layers is used for shape classification.The experimental results show that compared to the comparative method,the proposed method is more effective in distinguishing the shape categories of different buildings,and the generated feature coding have positive shape discrimination.

shape cognitiongraph convolutional neural networkbuilding shape classificationfeature fusiongraph classifi-cation

张付兵、孙群、马京振、孙士杰、温伯威

展开 >

信息工程大学地理空间信息学院,河南郑州 450052

61540部队,陕西西安 710054

智慧地球重点实验室,北京 100029

智慧中原地理信息技术河南省协同创新中心,河南郑州 450052

时空感知与智能处理自然资源部重点实验室,河南郑州 450052

展开 >

形状认知 图卷积神经网络 建筑物形状分类 特征融合 图分类

国家自然科学基金国家自然科学基金智慧地球重点实验室基金

4210145442101455KF2023YB02-02

2024

测绘学报
中国测绘学会

测绘学报

CSTPCD北大核心
影响因子:1.602
ISSN:1001-1595
年,卷(期):2024.53(9)
  • 14