首页|图Transformer支持下的河网模式识别

图Transformer支持下的河网模式识别

Drainage pattern recognition supported by graph Transformer

扫码查看
河网模式识别在地形地貌分析、地质矿物探测、河网数据多尺度变换等研究中发挥重要作用.为克服基于形态特征与几何特征的空间统计方法的稳健性不足问题,引进图卷积神经网络是当前的主要手段,然而图卷积方法仅关注河网形态的局部特征,仍未实现从全局视角出发的河网模式识别决策.因此,本文提出了一种图Transformer支持下的河网模式识别方法.该方法在河网几何形态知识支持下利用对偶图思想构建河网图结构,进一步通过GraphSAGE设计局部学习模块及Transformer设计全局学习模块.试验结果表明,相比已有的1s-ChebNet和GraphSAGE方法,本文方法能够结合局部河段组合特征与全局河网形态特征,做出准确的河网模式识别决策,识别精度可达94%.这为实现智能化河网模式识别提供了一种技术途径.
Drainage patterns recognition is essential for analyzing terrain and geomorphology,exploring geological minerals,and transforming river network data across various scales.However,traditional spatial statistical methods based on morpho-logical and geometric features are not robust enough.To overcome this deficiency,graph convolutional methods have emerged as a popular solution.Nevertheless,these methods often focus narrowly on local features,disregarding the crucial global per-spective necessary for comprehensive analysis.To address this issue,our study proposes a drainage pattern recognition method supported by graph Transformer.This method incorporates geometric knowledge by constructing river network graph struc-tures using dual graphs.It integrates a GraphSAGE-based local learning module and a Transformer-based global learning mod-ule,training the graph Transformer model.Experimental results demonstrate that our method achieves 94%accuracy in accu-rately recognizing drainage patterns by combining local segment composite features and global river network morphology fea-tures.This outperforms the 1st-ChebNet and GraphSAGE methods,presenting a promising approach for intelligent drainage pattern recognition.

drainage pattern recognitiongeometric knowledgeGraphSAGETransformer

余华飞、邱天奇、周哲、龚冲亚、肖天元、杨敏、艾廷华

展开 >

武汉大学资源与环境科学学院,湖北武汉 430079

地理信息系统教育部重点实验室,湖北武汉 430079

广州市城市规划勘测设计研究院有限公司,广东 广州 510060

河网模式识别 几何形态知识 GraphSAGE Transformer

2024

测绘学报
中国测绘学会

测绘学报

CSTPCD北大核心
影响因子:1.602
ISSN:1001-1595
年,卷(期):2024.53(11)