首页|融合多尺度与边缘特征的道路提取网络

融合多尺度与边缘特征的道路提取网络

扫码查看
利用遥感影像提取道路对城市发展有重要意义.但是由于道路尺度多变、易被遮挡等因素,导致出现道路漏检、边缘不完整等问题.针对以上问题,本文提出了一种融合多尺度与边缘细节特征的道路提取网络(MeD-Net).MeD-Net包括道路分割与边缘提取两部分.道路分割网络使用多尺度深层特征处理模块(MDFP),提取顾及全局与局部信息的多尺度特征,在卷积后使用组归一化优化模型训练;边缘提取网络利用细节引导融合算法提升深层边缘特征的细节信息,并利用注意力机制进行特征融合.为验证算法性能,本文利用Massachusetts道路数据集和青岛地区GF-2号道路数据集进行试验.试验表明,MeD-Net在两个数据集上交并比和F1值均取得最高精度,能够提取不同尺度道路和更完整地保持道路边缘.
Road extraction networks fusing multiscale and edge features
Extracting roads using remote sensing images is of great significance to urban development.However,due to factors such as variable scale of roads and easy to be obscured,it leads to problems such as road miss detection and incomplete edges.To address the above problems,this paper proposes a network(MeD-Net)for road extraction from remote sensing images integrating multi-scale features and focusing on edge detail features.MeD-Net consists of two parts:road segmentation and edge extraction.The road segmentation network uses multi-scale deep feature processing(MDFP)module to extract multi-scale features taking into account global and local information,and is trained using group normalization optimization model after convolution.The edge extraction network uses detail-guided fusion algorithms to enhance the detail information of deep edge features and uses attention mechanisms for feature fusion.To verify the algorithm performance,this paper conducts experiments using the Massachusetts road dataset and the GF-2 road dataset in Qingdao area.The experiments show that MeD-Net achieves the highest accuracy in both datasets in terms of intersection-over-union ratio and F1 value,and is able to extract roads at different scales and maintain road edges more completely.

road extractionsemantic segmentationmulti-scale featuresedge extraction

孙根云、孙超、张爱竹

展开 >

中国石油大学(华东)海洋与空间信息学院,山东青岛 266580

自然资源部华南热带亚热带自然资源监测重点实验室,广东 广州 510700

青岛海洋科学与技术试点国家实验室海洋矿产资源评价与探测技术功能实验室,山东青岛 266237

道路提取 语义分割 多尺度特征 边缘提取

2024

测绘学报
中国测绘学会

测绘学报

CSTPCD北大核心
影响因子:1.602
ISSN:1001-1595
年,卷(期):2024.53(12)