中国化学工程学报(英文版)2024,Vol.66Issue(2) :263-272.DOI:10.1016/j.cjche.2023.09.006

Machine learning with active pharmaceutical ingredient/polymer interaction mechanism:Prediction for complex phase behaviors of pharmaceuticals and formulations

Kai Ge Yiping Huang Yuanhui Ji
中国化学工程学报(英文版)2024,Vol.66Issue(2) :263-272.DOI:10.1016/j.cjche.2023.09.006

Machine learning with active pharmaceutical ingredient/polymer interaction mechanism:Prediction for complex phase behaviors of pharmaceuticals and formulations

Kai Ge 1Yiping Huang 1Yuanhui Ji1
扫码查看

作者信息

  • 1. Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research,School of Chemistry and Chemical Engineering,Southeast University,Nanjing 211189,China
  • 折叠

Abstract

The high throughput prediction of the thermodynamic phase behavior of active pharmaceutical in-gredients(APIs)with pharmaceutically relevant excipients remains a major scientific challenge in the screening of pharmaceutical formulations.In this work,a developed machine-learning model efficiently predicts the solubility of APIs in polymers by learning the phase equilibrium principle and using a few molecular descriptors.Under the few-shot learning framework,thermodynamic theory(perturbed-chain statistical associating fluid theory)was used for data augmentation,and computational chemistry was applied for molecular descriptors'screening.The results showed that the developed machine-learning model can predict the API-polymer phase diagram accurately,broaden the solubility data of APIs in polymers,and reproduce the relationship between API solubility and the interaction mechanisms be-tween API and polymer successfully,which provided efficient guidance for the development of phar-maceutical formulations.

Key words

Multi-task machine learning/Density functional theory/Hydrogen bond interaction/Miscibility/Solubility

引用本文复制引用

基金项目

National Natural Science Foundation of China(22278070)

National Natural Science Foundation of China(21978047)

National Natural Science Foundation of China(21776046)

出版年

2024
中国化学工程学报(英文版)
中国化工学会

中国化学工程学报(英文版)

CSTPCDEI
影响因子:0.818
ISSN:1004-9541
参考文献量45
段落导航相关论文