Abstract
Poly(4-methyl-1-pentene)hollow fiber membranes(PMP HFMs)are commonly used in gas separation membrane and artificial lung membrane in extracorporeal membrane oxygenation(ECMO),and its porous structure and mechanical properties have a significant impact on the performance of the membrane material.In our work,PMP HFMs were prepared by thermally induced phase separation method.Subsequently,through characterization analysis of powder X-ray diffraction,universal tensile machine,scanning electron microscope and other instruments,the effects of PMP concentration,diluent ratio,quenching temperature,air gap distance and winding speed on the membrane performance were systematically investigated to obtain optimal preparation conditions for PMP HFMs.The results showed that the PMP HFMs prepared under optimal conditions possessed good gas permeability with a nitrogen flux of 10.5 ml·MPa-1·cm-2 min-1,a surface dense layer,and a good tensile strength of 9.33 MPa.We believed that this work could provide useful references for the application of PMP membranes in the medical field.