Abstract
A simple and convenient preparation method with high catalytic reduction activity is crucial for the remediation of nitrate contamination.In this study,the innovation for fabricating a nanoelectrode was developed by calcinating the anodized plate to alter the surface crystalline phase of the material.The prepared calcined Ti nanopores(TNPs)electrode could effectively remove up to 95.1%nitrate from simulated groundwater at 30 mA·cm-2 electrolysis for 90 min,while under the same conditions,the removal efficiency of nanoelectrode prepared by conventional methods was merely 52.5%.Scanning electron microscopy images indicated that the calcined TNP nanoelectrode was porous with different pore sizes.The higher nitrate removal efficiency of TNPs-500(95.1%)than TNPs-400(77.5%)and TNPs-550(93.4%)may resulted from the positive nonlinear response of the larger electrochemical active surface area,the improved electron transfer and suitable surface structure,and not the"anatase-to-rutile"of surface TiO2 nanotubes.After 90 min of electrolysis,using Ru02 as an anode and adding 0.3 g·L-1 NaCl solution,87.5%nitrate was removed,and the by-products(ammonia and nitrite)were negligible.Increased temperature and alkaline conditions can enhance the nitrate removal,while higher initial nitrate concentration only improved the nitrate removal slightly.Moreover,The TNPs-500 elec-trode also exhibited excellent nitrate removal performance in real groundwater with the efficiency at 82.9%and 92.1%after 90 and 120 min,which were 0.87(removal efficiency=95.1%),0.92(removal efficiency=100%)of the efficiency for simulated groundwater,indicating the widely applicable condi-tions of the TNPs-500 electrode.This approach of surface-bonded elements and structure modification through calcination significantly improves catalytic activity and will guide the simple designing of functional nanostructured electrodes with wide application conditions.