首页|基于灰色关联度分析-极限学习机的低阻油层及水淹层测井识别——以渤海P区块馆陶组为例

基于灰色关联度分析-极限学习机的低阻油层及水淹层测井识别——以渤海P区块馆陶组为例

扫码查看
历经近20的开发,渤海P区块进入高含水期,馆陶组发育的大量低阻油层与水淹层在测井曲线形态上差异不明显.为了精确进行水淹层识别以及水淹层等级划分,采用了机器学习算法.首先采用灰色关联度分析,筛选低阻油层和水淹层识别的敏感参数曲线;其次构建了极限学习机水淹层识别模型,对模型进行训练,获取最优参数.将其应用于实际资料处理,结果表明,基于灰色关联度分析-极限学习机的低阻油层及水淹层测井识别方法对低阻油层与水淹层的预测精度较高,符合率达89.3%,远远优于未经过灰色关联度分析筛选的预测结果,具有实际应用价值.
Logging identification of low resistance oil reservoir and water-flooded layer based on grey relational analysis-extreme learning machine:Taking a case study of Guantao Formation in P block of Bohai Sea
After 20 years of development,P block of Bohai Sea has entered a high water cut stage,and a large number of low resistivity oil layers and water-flooded layers developed in Guantao Formation have no obvious difference in logging curve shape.In order to accurately identify water-flooded layer and classify water-flooded layer,machine learning algorithm is adopted in this paper.First,the sensitive parameter curve of the identification of water-flooded layer of the low resistivity oil layer is screened by using grey relational analysis;Then,the identification model of water-flooded layer of the extreme learning machine is constructed,and the model is trained to obtain the optimal parameters.It is applied to the actual data processing,the results show that the logging identification method of low resistance oil reservoir and water-flooded layer based on grey relational analysis and extreme learning machine has high prediction accuracy,and the coincidence rate is 89.3%,which is far better than the prediction results without grey relational analysis,and has practical application value.

low resistivity reservoirwater flooded layer identificationgrey relational analysisextreme learning machine

张超谟、徐文斌、张亚男、张冲、张占松、石文睿、杨旺旺、陈星河

展开 >

长江大学地球物理与石油资源学院,湖北武汉 430100

油气资源与勘探技术教育部重点实验室(长江大学),湖北武汉 430100

中国石化江汉油田分公司涪陵页岩气公司,重庆 408107

非常规油气省部共建协同创新中心(长江大学),湖北武汉 430100

展开 >

低阻油层 水淹层识别 灰色关联度分析 极限学习机

国家科技重大专项

2016ZX05038-006

2024

长江大学学报(自科版)
长江大学

长江大学学报(自科版)

影响因子:0.335
ISSN:1673-1409
年,卷(期):2024.21(2)
  • 24