首页|基于GA的RBF神经网络气液两相流持液率预测模型优化

基于GA的RBF神经网络气液两相流持液率预测模型优化

扫码查看
为了提高气液两相流持液率预测精度,针对传统径向基函数(RBF)神经网络预测气液两相流持液率网络拓扑结构困难和收敛速度慢等问题,提出一种基于遗传算法(GA)优化径向基函数神经网络的气液两相流持液率预测模型.通过系统聚类算法和灰色关联度分析(GRA)对收集的实验数据进行处理,优选出最优模型特征,同时结合遗传算法确定了RBF神经网络结构参数.基于室内实验数据进行训练,并与常用于持液率预测的反向传播(BP)神经网络、GA-BP神经网络及RBF神经网络进行对比,评估了模型的准确性及可行性.结果表明:GA-RBF神经网络模型均方误差为0.001 7,均方根误差为0.041 6,平均绝对误差为0.028 1,拟合度为0.948 3.相较于其他神经网络模型,该预测模型表现出更高的计算精度和更强的泛化能力.
Optimization of gas-liquid two-phase flow liquid hold-up prediction model with RBF neural network based on genetic algorithm
Aiming at the difficulty of network topology and slow convergence of traditional Radial Basis Function(RBF)neural network in predicting liquid holdup of gas-liquid two-phase flow,a prediction model based on Genetic Algorithm(GA)optimized RBF neural network was proposed to improve the prediction accuracy of liquid holdup of gas-liquid two-phase flow.The collected experimental data were processed by the system clustering algorithm and Gray Relational Analysis(GRA)to select the optimal model characteristics.The RBF neural network structure parameters were determined by GA.The training was carried out based on the laboratory experimental data and compared with the Back Propagation(BP)neural network,GA-BP neural network,and RBF neural network,which are commonly used for liquid holdup prediction.The accuracy and feasibility of the model were evaluated.The results showed that the mean square error of the model is 0.001 7,the root mean square error is 0.0416,the mean absolute error is 0.028 1,and the fitting degree is 0.948 3.Compared with other neural network models,the prediction model shows higher calculation accuracy and stronger generalization ability.

liquid holdupgas-liquid two-phase flowRBF neural networkGenetic Algorithmdata cleaning

廖锐全、李龙威、王伟、马斌、潘元

展开 >

长江大学石油工程学院,湖北武汉 430100

中国石油气举试验基地多相流研究室,湖北武汉 430100

油气钻采工程湖北省重点实验室(长江大学),湖北武汉 430100

中国石油吐哈油田分公司采油工艺研究院,新疆哈密 839009

展开 >

持液率 气液两相流 RBF神经网络 遗传算法 数据清洗

国家自然科学基金项目国家科技重大专项

621730492016ZX05056004-002

2024

长江大学学报(自科版)
长江大学

长江大学学报(自科版)

影响因子:0.335
ISSN:1673-1409
年,卷(期):2024.21(2)
  • 33