首页|基于CCU-Net的地震信号高分辨率处理方法

基于CCU-Net的地震信号高分辨率处理方法

扫码查看
地震资料采集受到各种各样的干扰和仪器设备的影响,往往呈现低分辨率、低信噪比的特征,影响后续地震解释和反演.常规的反褶积、Q补偿等高分辨率处理方法受限于子波提取难、Q值难以估计等问题无法很好地被应用于实际地震资料处理.深度学习由于能快速学习输入与 目标之间的映射关系,近来得到了分辨率处理领域的关注,但基于深度学习的地震数据高分辨率方法常未考虑多尺度与空间信息.提出了一种基于CCU-Net的处理方法,网络主体包含编、解码结构;融入CBAM、CA模块,使网络能够更加全面关注特征层的空间信息和通道信息;并采用L1、SSIM、MS-SSIM作为组合损失函数,提高网络学习不同尺度下结构信息的能力,能更好地恢复细节信息.通过正演模拟的方法生成了具有不同分辨率和噪声水平的地震数据用于网络训练.在合成地震数据和实际数据中,基于CCU-Net的处理方法显著地提高了地震数据的主频,拓宽了频带,层间信息得以更好的显示,与其他方法相比有效地提高了地震数据的分辨率,同时对噪声也起到了明显的压制效果.
The high-resolution processing method of seismic signals based on CCU-Net
In the process of seismic data acquisition,it is affected by a variety of infections and instruments and often presents the characteristics of low resolution and low signal-to-noise ratio,which affects the subsequent seismic interpretation process.Conventional deconvolution,Q compensation and other high resolution processing methods are limited by the difficulty of wavelet extraction and Q value estimation,and can not be applied to the actual seismic data processing.Because deep learning can quickly learn the mapping relationship between input and target,it has recently gained attention in the field of resolution processing,but the resolution methods based on deep learning often fail to consider multi-scale and spatial information.Therefore,a processing method based on CCU-Net is proposed.The main body of the network consists of encoding and decoding structures.Integrating CBAM and CA modules,the network can pay more attention to the spatial information and channel information of the feature layer.L1,SSIM and MS-SSIM are used as combined loss functions to improve the ability of the network to learn structural information at different scales and to recover the details better.The seismic data with different resolution and noise level are generated by forward simulation method for network training.In the synthetic seismic data and actual data,the CCU-Net based processing method has been significantly improves the main frequency of seismic data,widens the frequency band,and displays the interlayer information better.Compared with other methods,the resolution of seismic data is effectively improved,and the noise is also suppressed significantly.

deep learningseismic dataimprove resolutiondenoising

薛雅娟、杨强、高瑜翔

展开 >

成都信息工程大学通信工程学院,四川成都 610225

气象信息与信号处理四川省高校重点实验室,四川成都 610225

深度学习 地震数据 提高分辨率 去噪

2024

长江大学学报(自科版)
长江大学

长江大学学报(自科版)

影响因子:0.335
ISSN:1673-1409
年,卷(期):2024.21(6)