首页|基于深度学习的滑坡智能提取方法

基于深度学习的滑坡智能提取方法

扫码查看
为了快速、高效、智能提取滑坡,提高滑坡动态监测工作的效率,探索将YOLO V8 模型应用于高分辨率遥感影像滑坡自动解译当中,通过建立不同地区的滑坡解译样本,构建面向地质灾害监测的识别样本库;采用YOLO V8 深度学习网络结构,基于预训练模型构建大影像滑坡智能解译模型,实现滑坡的快速自动识别提取.结果表明:模型提取的滑坡结果与人工解译的滑坡提取边界重合度高,形状基本一致,分割精度较好,在验证集上mAP50达到了0.995,mAP50-95(M)为0.716 18,召回率为0.904 24.相较于传统卷积神经网络(CNN),模型具有更高的精度和更快的速率,可为滑坡动态监测工作提供技术支持.
Intelligent Landslide Extraction Method Based on Deep Learning
The aim of this paper is to extract landslides quickly,efficiently and intelligently to improve the efficiency of landslide dynamic monitoring.We explore the application of the YOLO V8 model in automatic interpretation of high-resolution remote sensing landslide image.By establishing landslide interpretation samples in different regions,we constructed a recognition sample library oriented to geohazard monitoring.Based on the YOLO V8 deep learning network structure and pre-training model,we constructed an intelligent interpretation model for large image landslides to rapidly and automatically identify and extract landslides.Findings indicate that the landslide results extracted by the model are highly overlapped with the manually interpreted landslide extraction boundaries,with basically the same shape and good segmentation accuracy.On the validation set,the mAP50 reached 0.995,the mAP50-95(M)was 0.716 18,and the recall rate was 0.904 24.Compared with the traditional convolutional neural network(CNN),this model has higher accuracy and faster processing speed,providing technical support for landslide dynamic monitoring.

landslidesdeep learningintelligent extraction modelgeologic hazard

赵静、陈喆、吴仪邦、崔长露、李经纬

展开 >

长江科学院 空间信息技术应用研究所,湖北 武汉 430010

武汉市智慧流域工程技术研究中心,湖北 武汉 430010

滑坡 深度学习 智能提取模型 地质灾害

2024

长江技术经济

长江技术经济

ISSN:
年,卷(期):2024.8(6)