首页|小断面土石组合地质条件下TBM施工围岩可掘性分级识别

小断面土石组合地质条件下TBM施工围岩可掘性分级识别

扫码查看
围岩可掘性分级以及识别研究对隧道掘进机(TBM)高效率施工及智能化控制意义重大.依托南水北调安阳市西部调水工程TBM施工实际数据,利用掘进性能综合指标单位贯入度推力(FPI)、单位贯入度扭矩(TPI)建立了小断面土石组合地质条件下TBM施工围岩可掘性分级标准;提出了 PCA-RF模型对围岩可掘性分级进行识别,并与BP、SVR和RF模型进行了比较讨论.结果表明:①建立的小断面土石组合围岩TBM施工可掘性分级标准是适用的,克服了土石组合围岩下传统围岩分类方法的局限性;②小断面土石组合围岩TBM施工可掘性分级PCA-RF 识别模型的识别准确率达到了 98.3%,高于BP、SVR和RF模型,可以满足工程施工需要.
Classification and Predictive Research on Excavability of Surrounding Rock for TBM Construction in Small Section with Soil-Rock Composite Geological Condition
The efficient construction and intelligent control of TBM heavily rely on the classification and real-time i-dentification of surrounding rock excavability.To address this,we establish a classification standard for surrounding rock excavability in TBM construction under geological conditions characterized by small sections and soil-rock com-binations based on actual data(penetration thrust and torque per unit penetration)from the Anyang Western Water Diversion Project.Moreover,we introduce the PCA-RF model for real-time identification and prediction of sur-rounding rock excavability,and then compared the results with those of BP,SVR,and RF models.Our research yields the following conclusions:1)The classification standard for surrounding rock excavability in TBM construc-tion under the geological conditions of small sections and soil-rock combinations proves to be applicable.This stand-ard resolves the limitations of traditional methods for classifying surrounding rock in soil-rock composite environ-ments.2)The PCA-RF model demonstrates an identification and prediction accuracy of 98.3%for the surrounding rock excavability in TBM construction under the geological conditions of small sections and soil-rock combinations.This accuracy surpasses that of the BP,SVR,and RF models and fulfills the demands of engineering construction.

tunnel boring machine(TBM)small sectionsoil-rock combinationclassification of excavabilityPCA-RF model

杨耀红、刘德福、张智晓、韩兴忠、孙小虎

展开 >

华北水利水电大学水利学院,郑州 450046

河南省黄河流域水资源节约集约利用重点实验室,郑州 450046

中州水务控股有限公司,郑州 450000

中水北方勘测设计研究有限责任公司,天津 300000

展开 >

隧道掘进机(TBM) 小断面 土石组合 可掘性分级 PCA-RF模型

国家自然科学基金重点项目河南省学科创新引智基地项目

51679089GXJD004

2024

长江科学院院报
长江科学院

长江科学院院报

CSTPCD北大核心
影响因子:0.618
ISSN:1001-5485
年,卷(期):2024.41(3)
  • 25