首页|基于RF-BiLSTM模型的河流水质预测

基于RF-BiLSTM模型的河流水质预测

扫码查看
水环境中过量的氮、磷和高锰酸盐会对流域造成严重污染,准确预测这三类指标的含量对流域污染治理具有重要意义.然而,现有的模型预测精度低,输入因子的选择缺乏数理依据.基于此,以邕江为研究区域,提出一种RF-BiLSTM的混合网络模型.该模型具有利用RF算法提取水质指标最优特征和利用BiLSTM模型提取输入数据的时间特征的优势,采用先降维后预测的方式对TN、TP和CODMn进行预测,并将深度学习中的CNN、LSTM、BiL-STM 和RF-LSTM作为基准模型与本研究所提模型作对比研究.研究结果表明,本研究模型预测TN、TP和CODMn的平均绝对百分比误差(MAPE)分别达到了4.330%、6.781%和7.384%,均低于其他基准模型,预测结果具有较高的准确性和实用性,可为水环境的污染治理提供有效的技术支持.
River Water Quality Prediction Based on RF-BiLSTM Model
Excessive nitrogen,phosphorus,and permanganate in aquatic environments can lead to significant water-shed pollution.Accurately predicting the levels of these indicators is crucial for effective pollution control.However,existing models often lack precision,and the selection of input factors lacks a mathematical basis.In this study,we propose a RF-BiLSTM hybrid network model focusing on the Yongjiang watershed as a case study.Leveraging the a-bility of RF(random forest)to extract optimal water quality index characteristics and the capacity of BiLSTM(bi-directional long-short-term memory)to capture temporal data patterns,our model employs dimensionality reduction followed by prediction to forecast TN,TP,and CODMn concentrations.Additionally,we conduct comparative analy-ses with benchmark models such as CNN,LSTM,BiLSTM,and RF-LSTM within the deep learning framework.Re-sults demonstrate that our proposed model achieves lower mean absolute percentage errors(MAPE)for TN,TP,and CODMn at 4.33%,6.781%,and 7.384%,respectively,outperforming other benchmark models.These findings indicate the high accuracy and practical utility of our predictions,offering valuable technical support for water pol-lution management.

water quality predictionfeature selectionrandom forestbidirectional long-short-term memory net-workdeep learning

兰小机、贺永兰、武帅文

展开 >

江西理工大学土木与测绘工程学院,江西赣州 341000

水质预测 特征选择 随机森林 双向长短时记忆神经网络 深度学习

国家自然科学基金项目

41561085

2024

长江科学院院报
长江科学院

长江科学院院报

CSTPCD北大核心
影响因子:0.618
ISSN:1001-5485
年,卷(期):2024.41(7)