首页|干酪根热解生烃分子模拟研究进展

干酪根热解生烃分子模拟研究进展

扫码查看
[意义]干酪根是世界上最丰富的天然有机质来源,研究干酪根的热解对油页岩的开发利用具有重要的意义.传统的热解生烃模拟实验难以深入揭示干酪根热解机理,而分子模拟方法可从原子分子水平上深入揭示干酪根热解的微观机理,是一种重要的研究手段.[进展]对干酪根热解生烃的分子模拟研究进展进行了述评,并结合实验结果,分别阐述了温度、升温速率、水、压力、页岩矿物组分对于干酪根热解的影响.主要有:(1)构建干酪根分子结构模型最常用的方法是基于实验分析方法中获得的元素、官能团信息和结构参数;(2)温度、升温速率、水、压力、页岩矿物组分对干酪根热解产物分子数和组分均存在不同程度的影响,选择合适的温度和升温速率可以使得页岩油的产率达到最大;(3)H2O分子可促进干酪根和重质页岩油的裂解,提高轻质页岩油和气体的产率;(4)对比分子模拟结果与实验结果发现,分子模拟在定量描述方面具有较大的优势,而在定性描述方面稍显不足;(5)分子模拟通常采用提高模拟温度的方法进而缩短反应时间来弥补地质上的热演化时间,这是目前分子模拟技术的缺陷之一;(6)干酪根的高温模拟会产生大量的C2H4,这与实验事实和地质概况不符,也是当前分子模拟的不足之处.[展望]展望未来,干酪根热解生烃分子模拟研究可在以下方面取得发展:(1)使用机器学习法快速构建相对分子量达上百万,并且同时反映干酪根化学结构和孔隙结构的分子结构模型;(2)建立富含页岩矿物组分、地层水、有机酸以及无机盐等多尺度且复杂的干酪根模型;(3)深入研究升温速率、水的相态、地层水、压力、矿物组分以及不同热演化程度对干酪根热解的影响;4)结合实际地质概况探索低温条件下干酪根的热解生烃机制,进而弥补实验—地质—理论之间的鸿沟,为页岩油和页岩气的勘探与开发提供重要的参考信息和理论指导.
Progress of Kerogen Pyrolysis for Hydrocarbon Generation Using Molecular Simulation
[Significance]Kerogen is the most abundant source of natural organic matter in the world. It is important to study the pyrolysis of kerogen for the exploitation and utilization of oil shales. The traditional pyrolysis experiment cannot easily reveal the mechanism of kerogen pyrolysis,but the molecular simulation method can expose the micro-scopic mechanism of kerogen pyrolysis at the atomic and molecular level,which is an important research method.[Progress]In this study,the research progress of molecular simulation of kerogen pyrolysis was systematically re-viewed. Combined with the experimental results,the effects of temperature,heating rate,water,pressure,and shale mineral composition on kerogen pyrolysis were described. The results showed:(1) The most commonly used method for constructing a kerogen molecular structure model is based on the elements,functional groups,and structural pa-rameters obtained from experimental analysis methods. (2) Temperature,heating rate,water,pressure,and shale mineral components all have varying degrees of influence on the molecular number and components of kerogen pyroly-sis products. In general,the number of molecules undergoing kerogen pyrolysis increases with the increase in tempera-ture. High temperature is not conducive to the direct pyrolysis process but helps to fully conduct the reaction in the hydropyrolysis process. An increase in heating rate increases the temperature at which kerogen begins to pyrolyze. The number of molecules produced by the pyrolysis of kerogen increases with the increase in heating rate,but a high heating rate reduces the number of molecules produced by pyrolysis. Choosing the appropriate temperature and heat-ing rate can maximize the yield of shale oil. (3) Water molecules can provide more hydrogen radicals to participate in the reaction,thereby promoting the cracking of kerogen and heavy shale oil,hindering the formation of C-C crosslink-ing structure,and improving the formation of light shale oil and gas yields. (4) Compared with the experimental re-sults,molecular simulation has significant advantages in the quantitative description,whereas it is slightly insuffi-cient in the qualitative description. (5) Molecular simulation increases the simulation temperature to shorten the reac-tion time to compensate for the geological thermal evolution time,which is one of the shortcomings of molecular simu-lation at present. (6) The high-temperature simulation of kerogen produces a large amount of C2H4,which is not con-sistent with the experimental facts and geological situation,which is also a deficiency of the current molecular simula-tion.[Prospects]Future studies on molecular simulation of kerogen pyrolysis concentrating on the following aspects will be beneficial. (1) The machine learning method is used to quickly construct a kerogen molecular structure model with a relative molecular weight of millions,reflecting both the chemical structure and pore structure of kerogen. (2) A multi-scale and complex kerogen model rich in shale mineral components,formation water,organic acids,and inorganic salts is established. (3) The effects of heating rate,water phase,formation water,pressure,mineral composition and different thermal evolution degree on kerogen pyrolysis are studied. (4) Combined with the actual geological situation,the mechanism of kerogen pyrolysis to generate hydrocarbon at low temperatures is explored to bridge the gap between experiment,geology,and theory,providing important reference information and theoretical guidance for the exploration and development of shale oil and gas.

kerogenmolecular structure modelpyrolysis mechanismmolecular dynamics simulationReaxFF force field

郭成波、李美俊、刘晓强、韩秋雅

展开 >

中国石油大学(北京)地球科学学院,油气资源与探测国家重点实验室,北京 102249

四川轻化工大学化学与环境工程学院,四川自贡 643000

干酪根 分子结构模型 热解机理 分子动力学模拟 ReaxFF力场

国家自然科学基金项目

42173054

2024

沉积学报
中国矿物岩石地球化学学会沉积学专业委员会 中国地质学会沉积地质专业委员会 中国科学院地质与地球物理研究所兰州油气资源研究中心

沉积学报

CSTPCD北大核心
影响因子:1.54
ISSN:1000-0550
年,卷(期):2024.42(5)