首页|沉积气压对AlCrTiSiN涂层组织结构、力学与抗高温氧化性能的影响

沉积气压对AlCrTiSiN涂层组织结构、力学与抗高温氧化性能的影响

扫码查看
沉积气压是涂层制备的重要工艺参数,为研究其对AlCrTiSiN纳米复合涂层组织结构、力学性能与抗高温氧化性能的影响,采用射频磁控溅射和脉冲直流磁控溅射复合技术,改变沉积气压(0.6,0.8 Pa)制备出2种AlCrTiSiN纳米复合涂层,并利用X射线衍射仪(XRD)、扫描电镜(SEM)及其附带的能谱仪(EDS)、纳米压痕仪等对比分析了2种涂层的结构与性能.结果表明:2种沉积气压下制备涂层的相结构均为fcc-(Al,Cr,Ti)N,均沿(111)晶面择优生长,但0.8 Pa制备涂层的(111)织构系数更大,表明其择优取向更明显.与沉积气压为0.8 Pa制备的涂层相比,0.6 Pa制备的涂层表面颗粒更细小,涂层更致密,具备更佳的力学性能,拥有更优异的抗弹性变形能力、抗塑性变形能力和膜基结合力.这一方面是因为在低沉积气压下沉积粒子到达基体上的能量更大;另一方面是由于0.8 Pa制备的涂层中可能出现了厚度较大并且较软的Si3N4相.在900℃氧化6 h后,涂层表面均生成了一层连续、致密的Al2 O3混合氧化膜,有效阻止了O向涂层内扩散,可对氧化膜下方涂层起到一定的保护作用.随着沉积气压由0.6 Pa增加到0.8 Pa,氧化物颗粒增大,氧化膜厚度增大,抗高温氧化性能下降.
Effects of Deposition Pressure on the Microstructure, Mechanical Behavior,and High-Temperature Oxidation Resistance of AlCrTiSiN Coatings
Deposition pressure is an important process parameter for coating preparation. To study its influence on the microstructure, mechani-cal properties and high-temperature oxidation resistance of AlCrTiSiN nanocomposite coatings, two types of AlCrTiSiN nanocomposite coatingswere prepared using RF magnetron sputtering and pulse DC magnetron sputtering composite technologies at different deposition pressures (0.6, 0.8 Pa). Comparative analyses of the structure and properties of two types of coatings were performed using X-ray diffractometer (XRD), scan-ning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) and nanoindenter. Results showed that the phase structure of the coatings prepared under two kinds of deposition pressures was fcc-(Al, Cr, Ti) N, which grew preferentially along the (111) crystal plane. However, the larger (111) texture coefficient of the coating prepared at 0.8 Pa indicated that the preferred orientation was more pronounced. Compared to the coating prepared at the deposition pressure of 0.8 Pa, the coating prepared at 0.6 Pa was characterized by finer surface particles, a denser coating and better mechanical properties, including better resistance to elastic and plastic deformation, as well as better adhesion between film and substrate. This was partly because the deposited particles reached the substrate with greater energy at the lower deposition pressure. On the other hand, a thicker and softer Si3 N4 phase might have been present in the coating prepared at 0.8 Pa. After oxida-tion at 900℃ for 6 h, a continuous and dense Al2 O3 mixed oxide film had formed on the surface of the coating, effectively preventing the diffu-sion of oxygen into the coating and protecting the coating under the oxide film. With the increase in deposition pressure from 0.6 to 0.8 Pa, the oxide particles increased, the thickness of the oxide film increased, and the high-temperature oxidation resistance decreased.

magnetron sputteringdeposition pressuremicrostructuremechanical propertyhigh-temperature oxidation resistance

管梦雪、范其香、郭明璐、张硕、郝雪卉、吴正环、曹凤婷、王铁钢

展开 >

天津职业技术师范大学 天津市高速切削与精密加工重点实验室,天津 300222

国家模具产品质量检验检测中心,广东 东莞 523841

聊城大学材料科学与工程学院,山东 聊城 252059

磁控溅射 沉积气压 组织结构 力学性能 抗高温氧化性能

国家自然科学基金天津市自然科学基金天津市自然科学基金天津市教委科研重点项目天津市教委科研重点项目广东省基础与应用基础研究基金

5150113022JCYBJC0160022JCZDJC006702022ZD0332022ZD0202021A1515111010

2024

材料保护
武汉材料保护研究所,中国腐蚀与防护学会 中国表面工程协会

材料保护

CSTPCD
影响因子:1.129
ISSN:1001-1560
年,卷(期):2024.57(5)
  • 16