首页|基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展

基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展

扫码查看
随着全球能源需求不断增长,化石燃料资源有限和二氧化碳排放对气候变化的影响愈加严重,减少二氧化碳排放已迫在眉睫。基于绿电的电化学还原二氧化碳(CO2 RR)方法是缓解化石燃料消耗和温室气体排放的理想途径。传统催化剂的研发模式主要依赖实验试错方法,难以满足对高效催化剂的研发需求。快速发展的机器学习等数据科学技术为催化剂研发带来范式变革的契机。高通量计算结合机器学习已经成为近年来电催化剂配方设计中的重要手段之一。基于此,本文概述了近年来高通量计算结合机器学习指导催化剂开发的研究成果,包括催化剂设计的原理、模拟计算的策略以及机器学习模型的构建。通过将高通量计算和机器学习结合,可以加速催化剂设计过程,为CO2 RR催化剂的高效筛选和开发提供了新方法,拓宽人工智能在催化剂筛选设计中的应用。
Advances in the Application of Machine Learning in Electrocatalytic Carbon Dioxide Reduction
In the context of continuous growth in global energy demand,limited fossil fuel resources,and the increasingly serious impacts of carbon dio-xide emissions on the climate,urgent reductions in carbon dioxide emissions are required.The electrochemical reduction of carbon dioxide(CO2 RR)based on clean electricity is an ideal way to alleviate fossil fuel consumption and greenhouse gas emissions.Traditional catalyst re-search and development models mainly rely on experimental trial-and-error methods,which are time consuming and limited in their ability to meet the needs for efficient catalysts.The rapid development of data science technologies,such as machine learning,has brought paradigm changing opportunities for catalyst research and development.High-throughput computing combined with machine learning has become an important ap-proach in the design of electrocatalysts in recent years.Thus,this paper reviews contemporary research on high-throughput computing combined with machine learning to guide catalyst development,including the principles of catalyst design,simulation calculation strategies,and the con-struction of machine learning models.The combination of high-throughput computing and machine learning should provide a new method for effi-cient screening and development of CO2 RR catalysts,which should broad the application of artificial intelligence in catalyst screening design.

CO2 RRdensity functional theory(DFT)machine learningdescriptorcatalyst screening

李歌、马子然、闾菲、彭胜攀、佟振伟

展开 >

北京低碳清洁能源研究院,北京 102211

CO2 RR 密度泛函理论计算 机器学习 描述符 催化剂筛选

2025

材料导报
重庆西南信息有限公司

材料导报

北大核心
影响因子:0.605
ISSN:1005-023X
年,卷(期):2025.39(1)