首页|基于磁记忆在线监测的再制造毛坯疲劳寿命预测方法

基于磁记忆在线监测的再制造毛坯疲劳寿命预测方法

扫码查看
对服役构件进行在线监测并预测其疲劳寿命具有重要的工程意义。基于45钢缺口试件的拉-拉疲劳试验,利用金属磁记忆在线监测系统实时跟踪记录了试件缺口位置在整个疲劳循环过程中的磁信号变化。通过对原始监测信号进行卡尔曼滤波处理,结果表明x向和y向磁记忆信号可以将整个疲劳过程划分为三个阶段,且y向磁信号对疲劳损伤演变更加敏感;进一步引入y向磁场梯度的标准差和鞘度作为特征参数,其对应的峰值点可分别作为第一、二阶段和第二、三阶段的分界点指标。同时提出了 x向磁信号突变点的峰值可用于表征试件断裂前的预警信息,并探讨了磁信号变化背后的机理,为再制造毛坯的疲劳寿命预测提供参考。
Fatigue Life Prediction Method of Remanufacturing Blank Based on Magnetic Memory Online Monitoring
It is of great engineering significance to online monitor and predict the fatigue life of in-service components.Based on the tension-tension fatigue test of 45 steel notched specimens,the magnetic signal variation of the notched position during the whole fatigue cycle was tracked and recorded in real time by using the metal magnetic memory online monitoring system.By applying Kalman filtering to the original monitoring signals,the results show that the whole fatigue process can be divided into three stages by the x-direction and y-direction magnetic signals,and y-direction magnetic signal is more sensitive to fatigue damage evolution.Furthermore,the parameters including standard deviation and kurtosis of y-direction magnetic field gradient are introduced as characteristic parameters,and their corresponding peak points can be used as the separating indicators for the first and second stages,as well as the second and third stages,respectively.Moreover,it was proposed that the peak value of the x-direction magnetic signal can be used to characterize the pre-warning information before the fracture of the specimen,and the mechanism underlying the variation of the magnetic signal was explored,which provides a reference for predicting the fatigue life of remanufacturingblanks.

metal magnetic memoryonline monitoringfatigue life predictionKalman filteringstandard deviationkurtosis

冷建成、赵雷、张新、许宏伟

展开 >

东北石油大学机械科学与工程学院,黑龙江大庆 163318

杭州长川科技股份有限公司,杭州 310051

金属磁记忆 在线监测 疲劳寿命预测 卡尔曼滤波 标准差 峭度

2025

材料导报
重庆西南信息有限公司

材料导报

北大核心
影响因子:0.605
ISSN:1005-023X
年,卷(期):2025.39(2)