首页|Comprehensive investigation on the structural,electronic and mechanical properties of T-Mg32(Al,Zn)49 phases in Al-Mg-Zn alloys

Comprehensive investigation on the structural,electronic and mechanical properties of T-Mg32(Al,Zn)49 phases in Al-Mg-Zn alloys

扫码查看
In the development process of crossover aluminum alloys,T-Mg32(Al,Zn)49 phases play a significant role in the precipitation strengthening effect.However,comprehensive understandings of the structural char-acteristics,interactions among alloying elements,mechanical property dependence on composition vari-ation,effects of doping and defects etc.are still inadequate.A combination of density functional theory(DFT)calculations and special quasi-random structures(SQSs)was applied to investigate the formation energies,lattice parameters,electronic structures and mechanical properties of the disordered T-phases,as well as the effects of possible defects and alloying elements.The formation energy and lattice constant of the T-phase gradually vary from 0 to-0.12 eV/atom and from 1.460 to 1.405 nm,respectively,with in-creasing Zn contents.Zn-3d orbitals exhibit stronger hybridization with Al-3s than Mg-3s orbitals,and this is further enhanced by increasing Zn contents,leading to improved covalency and mechanical prop-erties of the T-phase.The T-phases show good ductility according to the Poisson's ratio v,Cauchy's pres-sure and G/B.The A site is more favorable to remain vacant in Al-rich and Zn-poor environments,which is consistent with the previous experimental observations.For alloying elements,Zn atoms tends to occupy Al atoms at the B,C and F sites and Mg atoms at the G sites.Both Cu and Ag elements can decrease the formation energy of T-phases and possibly produce a greater number of T-phases during the precipitation process.The effect of Ag is more significant relative to Cu due to the deeper orbital hybridization.The computational results show good agreement with previous experimental data and provide new insights into the compositional design of new Al-Mg-Zn alloys.

Al-Mg-Zn alloysPrecipitationMechanical propertiesThermodynamic stabilityDensity functional theory

Boyu Xue、Wei Xiao、Xiwu Li、Guanjun Gao、Xiaowu Li、Yongan Zhang、Ligen Wang、Baiqing Xiong

展开 >

State Key Laboratory of Nonferrous Metals and Processes,China GRINM Group Co.,Ltd.,Beijing 100088,China

GRIMAT Engineering Institute Co.,Ltd.,Beijing 101407,China

General Research Institute for Nonferrous Metals,Beijing 100088,China

Department of Materials Physics and Chemistry,School of Materials Science and Engineering,Key Laboratory for Anisotropy and Texture of Materials,Ministry of Education,Northeastern University,Shenyang 110819,China

展开 >

National Key R&D Program of ChinaInnovation Fund Project of GRINM

2020YFF0218200

2024

材料科学技术(英文版)
中国金属学会 中国材料研究学会 中国科学院金属研究所

材料科学技术(英文版)

CSTPCD
影响因子:0.657
ISSN:1005-0302
年,卷(期):2024.173(6)
  • 71