首页|Tuning rheology and fire-fighting performance of protein-stabilized foam by actively switching the interfacial state of the liquid film

Tuning rheology and fire-fighting performance of protein-stabilized foam by actively switching the interfacial state of the liquid film

扫码查看
Biomolecular self-assembly has lately emerged as an intriguing method for creating stable gas-liquid dis-persions with unique functional characteristics.In this work,protein-metal coordination complexes were designed as the stabilizer for generating ultrastable fire-fighting foam and creating interfacial architec-tures that were actively switched between"rigid"and"mobile"interfacial states of liquid films in re-sponse to changes in pH and bulk solution compositions(metal ions or alkyl polyglycosides).The re-flected light interferometric technique was used to check interfacial states,and the foaming kinetics and rheological response of aqueous solution and liquid foam were investigated by dynamic surface tension tests and oscillatory rheology analysis.The results showed that liquid foams with mobile films with lower yield limits had a faster spreading rate to cover the burning oil,liquid foams with semi-rigid films can-not extinguish fires due to interfacial instability,and the enhanced rheology of the foam with rigid films established a robust and impenetrable barrier to effectively suppress fuel evaporation and combustion.A new correlation between interfacial properties and the fire-fighting performance of foam was proposed,which showed that the fire-extinguishing time of foam could be well correlated by the interfacial states or film lifetime rather than classical thermodynamics entry,spreading,and bridging coefficients(ESB co-efficients).

Fire-fighting foamsInterfacial statesRheologyProteinSurfactant

Ke Qiu、Xiaoyang Yu、Huan Li、Shouxiang Lu

展开 >

State Key Laboratory of Fire Science,University of Science and Technology of China,Hefei 230026,China

Anhui provincial major science and technology project

202103c08020005

2024

材料科学技术(英文版)
中国金属学会 中国材料研究学会 中国科学院金属研究所

材料科学技术(英文版)

CSTPCD
影响因子:0.657
ISSN:1005-0302
年,卷(期):2024.178(11)
  • 31