首页|Enhancing interfacial Li+transport and dielectric properties in poly(ethylene oxide)-based all-solid electrolytes via inactive g-C3N4 nanosheets filler incorporation

Enhancing interfacial Li+transport and dielectric properties in poly(ethylene oxide)-based all-solid electrolytes via inactive g-C3N4 nanosheets filler incorporation

扫码查看
The advancement of all-solid-state Li metal batteries(ASSLMBs)faces a major challenge in the growth of lithium dendrites on the anode-electrolyte interface.In this study,we propose a dual-filler approach using poly(ethylene oxide)(PEO)-based solid polymer electrolytes(SPEs)that combine Li1.4Alo.4Ti1.6(PO4)3(LATP)ion-conductive particles with graphitic carbon nitride(g-C3N4)nanosheets.Analysis through sec-ond harmonic resonance enhanced electrostatic force microscopy and critical current density(CCD)tests reveal that the g-C3N4 additives form nano-capacitors at the SPE-lithium interface,effectively reducing sudden changes in current densities.The distribution of relaxation time constant(DRT)measurements confirms that the g-C3N4 filler suppresses uncontrolled Li dendrite growth,effectively mitigating battery aging caused by anode interfacial degradation.Furthermore,X-ray photoelectron spectroscopy(XPS)anal-ysis indicates that the nitrogen-containing organic groups in g-C3N4 are reduced to form a stable interfa-cial layer with lithium metal.As a result of these enhancements,the electrolyte demonstrates remarkable interfacial stability in Li/Li symmetrical cells at 0.65 mA/cm2 and delivers promising performance in as-sembled Li-LiFePO4 batteries,achieving a reversible capacity of 121.6 mAh/g at 1 C after 200 cycles.These findings highlight the potential of dual-filler PEO-based SPEs for promoting interfacial lithium-ion trans-port in all-solid-state Li metal batteries.

Lithium metal anodeLithium dendriteDielectric force microscopyAll-solid-state electrolyteLithium ion batteries

Zhixuan Li、Weijian Zhang、Yue Chen、Qiaoquan Lin、Long Zhang、Jianming Tao、Oleg V.Kolosov、Jiaxin Li、Yingbin Lin、Zhigao Huang

展开 >

College of Physics and Energy,Fujian Normal University,Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials,Fuzhou 350117,China

Fujian Provincial Engineering Technical Research Centre of Solar-Energy Conversion and Stored Energy,Fuzhou 350117,China

Fujian Provincial Collaborative Innovation Centre for Advanced High-Field Superconducting Materials and Engineering,Fuzhou 350117,China

Physics Department,Lancaster University,Lancaster LA1 4YB,UK

The Faraday Institution,Quad One,Becquerel Avenue,Harwell Campus,Didcot,OX11 0RA,UK

展开 >

National Natural Science Foundation of ChinaNational Natural Science Foundation of ChinaNational Natural Science Foundation of ChinaNational Natural Science Foundation of ChinaNational Natural Science Foundation of ChinaNational Natural Science Foundation of ChinaScience Foundation of the Fujian ProvinceForeign Science and Technology Cooperation Project of Fuzhou Science and Technology BureauIndustry-University Cooperation Project of Fujian ProvinceFaraday InstitutionEPSRC Project

6157403711874113113440081120403822179020521722432023J015212021-Y-0862020H06027FIRG018EP/V00767X/1

2024

材料科学技术(英文版)
中国金属学会 中国材料研究学会 中国科学院金属研究所

材料科学技术(英文版)

CSTPCD
影响因子:0.657
ISSN:1005-0302
年,卷(期):2024.183(16)