首页|基于多巴胺改性纳米复合水凝胶的制备和性能

基于多巴胺改性纳米复合水凝胶的制备和性能

扫码查看
分别在酸性和碱性条件下用多巴胺修饰纳米羟基磷灰石制备纳米粒子改性的复合水凝胶并研究其性能,结果表明:多巴胺能在纳米羟基磷灰石表面生成氧化膜,且改性纳米粒子中的苯环与两性离子水凝胶高分子链形成共价键结合.同时,在酸性条件下多巴胺能提高纳米羟基磷灰石的分散性进而提高两性离子水凝胶的热稳定性(323 ℃才发生分解),也能提高水凝胶的网络结构强度(储能模量为2.7 MPa)和内耗能力(损耗因子为0.041).而且,酸性纳米复合水凝胶的抗压能力达到11.66 MPa,比纯PSBMA两性离子水凝胶提高了32倍.这表明,酸性纳米复合水凝胶的结构特点和力学性能与天然软骨相似.
Preparation and Properties of Nanocomposite Hydrogel with Dopamine Modification
Zwitterionic hydrogel is one of the most promising cartilage repair and replacement materi-als with good biocompatibility and anti-bacteria adhesion properties.However,there is a certain gap in-volving in mechanical properties compared to natural cartilage,which greatly limits its practical applica-tion.Herein,the nano-hydroxyapatite was modified with dopamine by acid,and alkali conditions respec-tively to obtain a nanoparticle-modified composite hydrogel.It is found that an oxide film could form on the surface of nano hydroxyapatite modified by dopamine,and the benzene ring in the modified nano par-ticles is combined to form a covalent bond with the zwitterionic hydrogel polymer chain.Meanwhile,dopa-mine improves the dispersity of nano-hydroxyapatite by acidic condition,thereby enhancing the thermal stability of zwitterionic hydrogel(decomposing until 323℃),as well as its network structure strength(ener-gy storage modulus of 2.7 MPa)and internal friction capacity(loss factor of 0.041).Moreover,the com-pressive strength of acid nanocomposite hydrogel arrives at 11.66 MPa,which is 32 times higher than that of pure PSBMA zwitterionic hydrogel.Thus,the structural characteristics and mechanical properties of acid nanocomposite hydrogels are similar to those of natural cartilage,which provides a significant ref-erence for the design and preparation of bionic materials.

polymer materialnanocomposite hydrogelmechanical propertiesdopamine modifica-tionnano hydroxyapatite

王仲楠、郭慧、母悦山

展开 >

北京交通大学机械与电子控制工程学院 北京 100044

高分子材料 纳米复合水凝胶 力学性能 多巴胺改性 纳米羟基磷灰石

北京交通大学人才基金国家自然科学基金

2022XKRC00951905296

2024

材料研究学报
国家自然科学基金委员会 中国材料研究学会

材料研究学报

CSTPCD北大核心
影响因子:0.605
ISSN:1005-3093
年,卷(期):2024.38(4)
  • 40