首页|基于LSTM-UPF混合驱动方法的燃料电池寿命预测

基于LSTM-UPF混合驱动方法的燃料电池寿命预测

扫码查看
燃料电池的寿命预测是燃料电池健康管理的重要组成部分,可为燃料电池的运行和维护提供指导性意见.为提高寿命预测的工况适应性并保证预测精度,本工作结合长短期记忆神经网络(long short-term memory neural network,LSTM)和无迹粒子滤波(unscented particle filter,UPF)两种算法的优势,提出了一种 LSTM-UPF混合驱动方法进行稳态和准动态工况下燃料电池的寿命预测.该方法首先优化训练预测模型的实验数据并采用离散小波变换(discrete wavelet transform,DWT)技术将其分解为高频部分和低频部分,使用LSTM算法对这两部分分别进行预测实现对燃料电池长期老化趋势的预测,并使用修正因子对趋势预测结果进行漂移修正,然后利用得到的燃料电池长期老化趋势,根据UPF算法对燃料电池的剩余使用寿命(remaining useful life,RUL)进行估计.采用预测寿命终点、预测寿命误差、置信区间宽度、RUL预测误差等评价指标对不同寿命预测方法进行对比分析,结果表明,LSTM-UPF混合预测方法对燃料电池稳态工况和准动态工况的RUL预测误差分别为4.1%和3.4%,比基于模型的PF和UPF方法具有更精确的RUL预测结果与高质量的预测置信区间,工况适应性良好.本研究有助于提高多工况下的燃料电池寿命预测精度和置信度.
Life prediction of fuel cells based on the LSTM-UPF hybrid method
Life prediction for fuel cells is crucial to fuel cell health management,offering their operation and maintenance guidance.Advantages of a long short-term memory neural network(LSTM)and an unscented particle filter(UPF)algorithm are combined to enhance condition adaptability in life prediction and ensure accuracy.The proposed LSTM-UPF hybrid method is designed to predict fuel cell life under steady-state and quasidynamic conditions.Initially,experimental data used for model training is optimized and decomposed into high-frequency and low-frequency components using the discrete wavelet transform technique.The LSTM algorithm predicts these components,forecasting the long-term aging trend of fuel cells.Drift correction is then applied to refine the trend prediction results.The fuel cell's remaining useful life(RUL)is estimated using the UPF algorithm based on the long-term aging trend.Evaluation indexes,including prediction life end,life prediction error,confidence interval width,and RUL prediction error,are adopted to assess different life prediction methods.Comparative results demonstrate that the LSTM-UPF hybrid life prediction method yields RUL prediction errors of 4.1%and 3.4%for steady-state and quasidynamic conditions,respectively.Moreover,it exhibits more accurate RUL predictions,high-quality confidence intervals,and strong adaptability in both scenarios.This study enhances the accuracy and confidence level of fuel cell life predictions.

proton exchange membrane fuel celllife predictionlong short-term memory neural networkunscented particle filter

曾其权、罗马吉、杨印龙、黄庆泽

展开 >

中广核研究院有限公司,广东深圳 518000

武汉理工大学汽车工程学院,湖北武汉 430070

质子交换膜燃料电池 寿命预测 长短期记忆神经网络 无迹粒子滤波

国家自然科学基金湖北省重点研发计划

522770802023BAB114

2024

储能科学与技术
化学工业出版社

储能科学与技术

CSTPCD北大核心
影响因子:0.852
ISSN:2095-4239
年,卷(期):2024.13(3)
  • 20