首页|多尺度分解下GRU-TCN集成的动力电池剩余使用寿命预测方法

多尺度分解下GRU-TCN集成的动力电池剩余使用寿命预测方法

扫码查看
精准预测动力电池的剩余使用寿命(remaining useful life,RUL)能够提前规避因电池过度使用带来的风险,为退役电池的二次利用提供决策依据,提升电池第二寿命的利用率.为了降低动力电池RUL预测任务中噪声和容量回升现象导致的非线性特征对RUL预测精度的影响,提出了一种基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)、门控循环单元网络(gated recurrent unit,GRU)和时序卷积网络(temporal convolutional networks,TCN)集成的动力电池RUL预测模型.首先,使用EEMD对原始数据进行分解,动力电池容量衰退过程中由噪声和容量回升现象导致的非线性特征被分解到高频分量,而原始容量数据的主要趋势被分解到低频分量.其次,再使用GRU和TCN网络分别对高频分量和低频分量进行预测.最后,使用Attention对预测结果进行集成.在NASA数据集上的实验结果表明,本工作提出的集成模型的预测精度和对非线性特征的拟合程度都优于其他单一模型和其他同类型模型,最大平均绝对误差和最大均方根误差分别在0.52%和0.74%内,绝对误差在1个循环周期内,证明本模型有较好的RUL预测能力.
Predicting the residual useful life of power batteries based on the GRUU-TCN ensemble under multiscale decomposition
Accurate prediction of the remaining useful life(RUL)of power batteries can avoid the risk of battery overuse,inform decision making on the secondary use of retired batteries,and improve the utilization rate of second-life batteries.We propose a method based on ensemble empirical mode decomposition(EEMD),gated recurrent units(GRUs),and temporal recurrent unit networks to reduce the dependence of RUL prediction accuracy on nonlinear features(this dependence is caused by noise and capacity recovery in the power battery RUL prediction task).GRU and temporal convolutional networks(TCNs)are integrated into the RUL prediction model for power batteries.First,the raw data are decomposed using EEMD,and the nonlinear features caused by noise and capacity rebound during power battery capacity decline are decomposed into high-frequency components.The main trends of the raw capacity data are decomposed into low-frequency components.Next,GRUs and TCNs are used to predict the high-and low-frequency components,respectively.Finally,the predictions are integrated using attention.The experimental results on the NASA dataset show that the prediction accuracy and the fitting of nonlinear features of the integrated model proposed in this paper are better than those of other single models and other models of the same type,with the maximum average absolute error and the maximum root-mean-square error within 0.52%and 0.74%,respectively,and the absolute error within one cycle period.These results prove that the proposed model produced more accurate predictions of the RUL than conventional models.

power batteryremaining service lifeempirical mode decompositiongated recurrent unit networktemporal convolutional networks

刘佳、马志强、刘广忱、高俊东、李宏勋

展开 >

内蒙古工业大学数据科学与应用学院

大规模储能技术教育部工程研究中心,内蒙古呼和浩特 010080

内蒙古工业大学大学电力学院

动力电池 剩余使用寿命 经验模态分解 门控循环单元网络 时序卷积网络

国家自然科学基金内蒙古自治区高等学校碳达峰碳中和研究项目

62166029STZX202307

2024

储能科学与技术
化学工业出版社

储能科学与技术

CSTPCD北大核心
影响因子:0.852
ISSN:2095-4239
年,卷(期):2024.13(3)
  • 20