首页|基于产线大数据的锂离子电池一致性动态特性分选方法

基于产线大数据的锂离子电池一致性动态特性分选方法

扫码查看
随着锂离子电池生产规模的迅速扩大,电池制造商急需高精度高效率的电池分选方法,增强电池成组后的一致性,从而提升电池组寿命、安全性和能量密度.基于容量和内阻等特性的传统分选技术可以满足成组后的静态一致性需求,但无法保证同组电池的动态一致性.因此,综合考虑电池在整个充放电过程中的性能,基于充放电电压曲线动态特性的分组方法是下一代分选技术的发展方向.本文基于电池产线大数据,从电池分容阶段的电压曲线提取关键动态特征,形成了基于K-means聚类的电池分选方法.此外,本文还从电池分容后的回充阶段提取了用于评估电池性能一致性的指标,并设计了一个以指标标准差为核心的电池一致性评价方法.与传统的电池分选方法相比较,本文方法分选后的电池综合性能一致性提高了15.65%.
Method for sorting the dynamic characteristics of lithium-ion battery consistency based on production line big data
As lithium-ion battery production rapidly expands, manufacturers urgently require high-precision and high-efficiency sorting methods to improve the consistency, lifespan, safety, and energy density of battery packs. Traditional techniques that rely on capacity and internal resistance address static consistency postgrouping but fail to ensure dynamic consistency within the same group. Addressing this, our study focuses on the dynamic characteristics of the charge-discharge voltage curve to propose a next-generation sorting approach. We extract key dynamic features from the voltage curve during the battery capacity grading process, utilizing big data from the production line, and employ K-means clustering for battery sorting. Furthermore, we assess battery performance consistency by analyzing metrics from the recharging stage postcapacity grading, devising an evaluation method based on the standard deviation of these metrics. Our proposed sorting method demonstrates a 15.65% improvement in the overall performance consistency of batteries compared to conventional approaches.

lithium-ion batterybattery consistencybattery sortingclustering algorithm

李革、孔祥栋、孙跃东、陈飞、袁悦博、韩雪冰、郑岳久

展开 >

上海理工大学机械学院,上海 200093

四川赛鸥科技有限公司,四川宜宾 644000

清华大学车辆与运载学院智能绿色车辆与交通全国重点实验室,北京 100084

锂离子电池 电池一致性 电池分选 聚类算法

国家自然科学基金国家自然科学基金上海市自然科学基金

522772225217721722ZR1444500

2024

储能科学与技术
化学工业出版社

储能科学与技术

CSTPCD北大核心
影响因子:0.852
ISSN:2095-4239
年,卷(期):2024.13(4)
  • 36