首页|集装箱式储能电站两相冷板液冷系统的温控效果研究

集装箱式储能电站两相冷板液冷系统的温控效果研究

扫码查看
长期处于高温与大温差将会损坏电池性能与使用寿命,而现有的电池储能冷却系统普遍存在冷却效率低、冷热气流组织紊乱以及漏液风险等问题.针对以上不足,本文研发了应用于大型集装箱储能的新型两相冷板液冷系统,并在湖南省湘潭市某储能电站对其温控效果进行现场实测.首先,分析了两相冷板在整个充、放电过程中对全舱与各电池箱的电池温度和温度一致性的控制效果,其次,揭示了充、放电过程结束后的静置期间电池温度变化规律.研究结果表明,两相冷板液冷系统在整个充、放电过程中能够有效降低电池的温升,并将全舱电池的最大温差从传统液冷系统的4.17℃降低至3℃以内,提高了电池温度的一致性;在同等充、放电条件下,充电时电池散发的热量高于放电时电池散发的热量;无冷却情况下,静置阶段储能电站内部电池会出现80 min及更长时间持续高温的现象.
Study on the temperature control effect of a two-phase cold plate liquid cooling system in a container energy storage power station
Long-term high temperatures and temperature differences can damage battery performance and lifespan.Therefore,a novel two-phase cold plate liquid cooling system has been developed for large-scale energy storage,and its temperature control effect has been measured at an energy storage power station in Xiangtan City,Hunan Province.First,the control effect of the two-phase cold plate on battery temperature variation and temperature consistency across the entire cabin and each box during the entire charging and discharging process is examined.Subsequently,the temperature variation in the battery after charging and discharging is analyzed.The results indicate that two-phase cold plate cooling can effectively mitigate temperature increases and improve the temperature consistency of the battery,reducing the maximum temperature difference from the traditional liquid cooling system range of 4.17℃to within 3℃during charging and discharging.Under identical conditions,the heat dissipation of the battery during charging exceeds that during discharging.If the cooling system is not turned on during the static phase,the phenomenon of elevated battery temperatures inside the power station will persist for 80 minutes or longer.

energy storage power stationbattery temperaturetwo-phase liquid coolingthermal management

张雅新、张泉、娄旭静、周浩、陈志文、龙刚

展开 >

湖南大学土木工程学院,湖南 长沙 410000

威胜能源技术股份有限公司,湖南 湘潭 411100

储能电站 电池温度 两相液冷 热管理

国家自然科学基金&&郴州国家可持续发展议程创新示范区建设省级专项(2022)

521780732023YFE01204002022SFQ28

2024

储能科学与技术
化学工业出版社

储能科学与技术

CSTPCD北大核心
影响因子:0.852
ISSN:2095-4239
年,卷(期):2024.13(6)