首页|储能锂离子电池高温诱发热失控特性研究

储能锂离子电池高温诱发热失控特性研究

扫码查看
储能系统是新型电力系统的重要支撑,锂离子电池储能是当前主流发展方向之一.电池安全性是制约锂电储能系统的重要技术瓶颈.本文研究了锂离子电池高温诱发热失控的电热响应特性,设计了在自然对流换热情况下的逐级升温实验,基于谢苗诺夫理论对电池不同阶梯温度点的失效规律进行了分析,结合电池内部副反应探究了各温度区间的电压变化、电压平均下降率以及自生热特性.研究表明电池在140~160℃区间爆发热失控、最高温度达到464.6℃,热失控过程中的破裂漏气现象对最高温度有着显著影响;当电池荷电状态降低为50%时,电池可由热失控转为功能性失效.研究结论为进一步的安全管理与热失控抑制研究提供了基础.
Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage
Energy storage systems play a crucial role in the advancement of modern electric power systems.Among these,lithium-ion battery energy storage is a key area of focus.A technical challenge hindering the application of lithium-ion batteries in energy storage is safety.This paper explores the electrical and thermal characteristics of battery thermal runaway triggered by overheating.A stepwise heating experiment,employing natural convection heat transfer,was conducted to analyze the failure modes of batteries at various temperature thresholds using the Semenov theory.This research examines changes in voltage,the average voltage drop rate,and self-heating characteristics across different temperatures,considering internal side reactions.Results indicate that thermal runaway occurs at 140-160℃,peaking at a maximum temperature of 464.6℃.The phenomena of rupture and gas leakage during the thermal runaway considerably influence the peak temperature observed.Furthermore,when the state of charge of the battery is reduced to 50%,the battery transitions from thermal runaway to functional failure.These findings provide a foundation for future research on safety management and mitigation of thermal runaway in lithium-ion batteries.

lithium-ion batterybattery safetythermal runawayoverheat faultthermal analysis

刘承鑫、李梓衡、陈泽宇、李鹏祥、陶庆一

展开 >

东北大学机械工程与自动化学院,辽宁 沈阳 110819

宁夏理工学院机械工程学院,宁夏石嘴山 753000

锂离子电池 电池安全 热失控 过温故障 热分析

国家自然科学基金项目宁夏自然科学基金项目辽宁省科技计划项目

519770292023AA033732022JH2/101300225

2024

储能科学与技术
化学工业出版社

储能科学与技术

CSTPCD北大核心
影响因子:0.852
ISSN:2095-4239
年,卷(期):2024.13(7)