首页|竖直波纹流道内超临界氮气流动与传热研究

竖直波纹流道内超临界氮气流动与传热研究

扫码查看
本工作开展了不同质量流速[G=200~400 kg/(m2·s)]、热流密度(q=200~400 kW/m2)和系统压力(P=5~7 MPa)对超临界氮气在竖直波纹流道内流动与传热特性影响的研究,分析了局部对流换热系数和周期平均对流换热系数分布特性,结合场协同原理和浮升力效应分析不同竖直流向之间对流换热系数差异产生的主要原因.结果表明,波纹周期内局部对流换热系数存在波动;周期平均对流换热系数能更好地反映超临界氮气在流道内的整体流动换热特性.提高质量流速可以显著增强换热,削弱流向对换热系数的影响;增加热流密度会降低流道内换热系数,强化流向对换热系数的影响;系统压力接近临界压力会提高流道内换热系数峰值,不同流向换热系数差异受系统压力影响较小;波纹流道内不同流向对流换热系数差异主要是由浮升力效应和场协同效应共同影响产生的.
Study on supercritical nitrogen flow and heat transfer characteristics in a vertical corrugated channel
This paper examines the effects of different mass flow rates[G=200-400 kg/(m2·s)],heat fluxes(q=200-400 kW/m2),and system pressures(P=5-7 MPa)on the flow and heat transfer characteristics of supercritical nitrogen in a vertical corrugated channel.The local heat transfer distribution characteristics and periodic average convective heat transfer coefficients are analyzed.The primary reasons for the differences between the vertical flow directions are analyzed using the field synergy principle and the buoyancy effect.The results show that the local heat transfer coefficient is unevenly distributed and fluctuates in the period.The periodic mean heat transfer coefficient better reflects the overall flow heat transfer characteristics of supercritical nitrogen in the flow channel.Increasing the mass flow rate can significantly enhance the heat transfer and weaken the influence of the flow direction on the heat transfer coefficient.Increasing the heat flux decreases the heat transfer coefficient in the flow channel and strengthens the influence of the flow direction on the heat transfer coefficient.When the system pressure is close to critical,the peak value of the heat transfer coefficient in the flow channel increases,and the differences in the heat transfer coefficients in different flow directions are slightly affected by the system pressure.The difference in the convective heat transfer coefficient in different flow directions in a corrugated channel is primarily caused by the buoyancy and field synergy effects.

compressed air energy storagesupercritical nitrogencold storagecorrugated channelfield synergy

李澎煜、林曦鹏、王亮、陈海生、王艺斐

展开 >

中国科学院工程热物理研究所,北京 100190

中国科学院大学,北京 100049

中国科学院工程热物理研究所南京未来能源系统研究院

中国科学院大学南京学院,江苏 南京 211135

毕节高新技术产业开发区国家能源大规模物理储能技术研发中心,贵州 毕节 551700

展开 >

压缩空气储能 超临界氮气 蓄冷 波纹流道 场协同效应

国家自然科学基金贵州省科技计划

52106277黔科合基础-ZK[2023]1001

2024

储能科学与技术
化学工业出版社

储能科学与技术

CSTPCD北大核心
影响因子:0.852
ISSN:2095-4239
年,卷(期):2024.13(8)
  • 2