首页|考虑锂电池温度和老化的荷电状态估算

考虑锂电池温度和老化的荷电状态估算

扫码查看
针对锂离子动力电池工作环境复杂且电池老化导致内部参数辨识精度低与荷电状态估计误差大的难题,本文提出了一种多新息最小二乘法与平方根容积卡尔曼滤波估计锂离子电池荷电状态的联合算法,实现动力电池在全服役周期内多温度条件下的状态估算.首先,为解决传统最小二乘法对历史数据利用率低的问题,在最小二乘法中融入多新息理论,采用一阶RC等效电路建立电池模型,利用多新息最小二乘法对电池内部参数进行参数辨识;然后,采用平方根容积卡尔曼滤波估算电池SOC;最后,通过多温度全寿命的电池实验数据对本文所提算法进行验证,并且与扩展卡尔曼滤波、容积卡尔曼滤波算法进行对比,证明本文提出算法的有效性.实验结果表明:本文提出的多新息最小二乘-平方根容积卡尔曼滤波算法在多温度全寿命条件下,能够准确反映动力电池内部参数和精确估算电池SOC,电压平均绝对误差不超过40 mV,SOC的估算误差控制在2%范围内.
State of charge estimation considering lithium battery temperature and aging
To solve the low internal parameter identification accuracy and large charge state estimation error caused by complex working environments and the aging of lithium-ion power batteries,this study proposed a combined algorithm of a multi-innovation least squares method and square root cubature Kalman filter to estimate the charge state of lithium-ion batteries,and realized the state estimation of power batteries under multitemperature conditions during the its lifetime.First,to solve the low utilization rate of historical data by the traditional least squares method,the multi-innovation theory was incorporated into the least squares method,a first-order RC equivalent circuit was used to establish the battery model,and the internal parameters of the battery were identified by the multi-innovation least squares method.Subsequently,the SOC was estimated by the square root cubature Kalman filter.Finally,the effectiveness of the proposed algorithm was verified by comparing the experimental data of the multitemperature battery with that obtained using the extended Kalman filter and cubature Kalman filter algorithms.The experimental results showed that the proposed algorithm could accurately reflect the internal parameters of the power battery and estimate the SOC of the battery under the condition of the multitemperature lifetime.The average absolute voltage error was less than 40 mV,and the SOC estimation error was controlled within 2%.

lithium-ion batterymulti-innovation least square algorithmsquare root cubature Kalman filtermulti-temperaturestate of charge

陈峥、杨博、赵志刚、申江卫、肖仁鑫、夏雪磊

展开 >

昆明理工大学交通工程学院,云南 昆明 650500

北京航天发射技术研究所,北京 100076

锂电池 多新息最小二乘法 平方根容积卡尔曼滤波 多温度 荷电状态

国家自然科学基金项目

52267022

2024

储能科学与技术
化学工业出版社

储能科学与技术

CSTPCD北大核心
影响因子:0.852
ISSN:2095-4239
年,卷(期):2024.13(8)
  • 14