首页|基于相变储热的先进高温热泵储能单元的热力学分析

基于相变储热的先进高温热泵储能单元的热力学分析

扫码查看
卡诺电池利用热力学循环将电能储存为热能,可灵活结合工业余热,实现冷、热、电的协同供应,从而提高可再生能源的渗透率.在此,本工作探讨了卡诺电池整合基于相变储热的壳管式热能存储的热力学性能,并从传热流体和储能介质之间温度变化、累积存储/释放热量及㶲量等方面研究了其广泛的热力学性能.此外,还对已建立的二维瞬态模型进行了无量纲分析,使结果更具通用性.结果表明,充电过程结束时,对应的出口温度可达0.83.设备的最大功率和平均功率分别可达1860 W和624.7 W.根据热力学第二定律,可以发现沿着流动方向,储存的㶲依次减少,这也是由于大量的㶲被储存在进口的PCM中,在放电时间t*=0.93时,储能单元释放的㶲量接近于0.
Thermodynamic analysis of an advanced high-temperature heat pump energy storage unit based on phase-change heat storage
Carnot batteries use thermodynamic cycles to convert and store electrical energy as thermal energy,which can be effectively integrated with industrial waste heat to facilitate a coordinated supply of cooling,heat,and electricity.This approach enhances the integration of renewable energy sources.This study investigates the thermodynamic properties of Carnot batteries,coupled with shell-and-tube thermal energy storage systems based on phase-change heat storage.We thoroughly analyzed the thermodynamic properties of the battery,considering factors such as temperature variations between the heat transfer fluid and the energy storage medium,the cumulative heat storage and release process,and the overall heat capacity.In addition,we performed a dimensionless analysis of the established two-dimensional transient model to improve the generalizability of the results.Results indicate that after the charging cycle,the outlet temperature can reach 0.83.The maximum and average power of the device were calculated as 1860 W and 624.7 W,respectively.Based on the second law of thermodynamics,it can be inferred that the stored exergy decreases sequentially along the flow direction,primarily due to the significant amount of exergy stored in the inlet PCM,with the amount of exergy released by the storage unit approaching 0 at the discharge time,t*=0.93.

energy storagephase change heat storagenumerical simulationthermodynamic analysis

肖振坤、陈珍、杨壮、戚宏勋、闫君

展开 >

中国电力工程顾问集团有限公司中电储能工程技术研究院,上海 200333

中电智慧储能科技(上海)有限公司,上海 200333

上海交通大学工程热物理研究所,上海 200240

储能 相变储热 数值模拟 热力学分析

2024

储能科学与技术
化学工业出版社

储能科学与技术

CSTPCD北大核心
影响因子:0.852
ISSN:2095-4239
年,卷(期):2024.13(12)