首页|基于微博数据的西安市空间意象研究

基于微博数据的西安市空间意象研究

扫码查看
在城市空间规划数字化转型趋势下,结合大数据对"城市意象"研究方法进行不断创新.为进一步优化西安空间结构,综合评估各街道发展潜力,强化"西安经验",该文以西安市一年微博签到数据为例,在相关学者对城市意象因子分类的基础上,将意象因子分为城市环境、文化活动与自然山水三大类.进行词频统计及空间聚类分析,挖掘城市各街道特色意象因子.同时从文化、生态、经济三方面选取8个空间意象影响因子,使用地理探测器对空间意象驱动因子作进一步分析,并结合各街道发展现状,提出相关优化策略.
A Study on Spatial Imagery of Xi'an Under Weibo Data
Under the digital transformation trend of urban spatial planning, the research method combined with big data of "urban imagery" is being constantly innovated. In order to further optimize the spatial structure of Xi'an, comprehensively assess the development potential of its streets and strengthen the "Xi'an experience", this paper, based on the check-in data on microblog over one year and the categorization of urban imagery factors by scholars, classified the imagery factors into three categories: urban environment, cultural activities and natural landscape. Also, word frequency statistics and spatial clustering analysis were carried out to excavate the featured imagery factors of each street in the city. Meanwhile, eight spatial imagery influencing factors were selected from cultural, ecological and economic aspects, and the spatial imagery driving factors were further analyzed employing geodetectors, with relevant optimization strategies presented in the light of the current development situation of each street.

urban imageryWeibo dataspatial analysisgeodetectorXi'an

唐园园、连华、王菲

展开 >

兰州交通大学建筑与城市规划学院,甘肃兰州 730070

城市意象 微博数据 空间分析 地理探测器 西安

2024

重庆建筑
重庆市建筑科学研究院

重庆建筑

影响因子:0.292
ISSN:1671-9107
年,卷(期):2024.23(3)
  • 19