首页|变密度Ericksen-Leslie方程的高效数值算法及误差分析

变密度Ericksen-Leslie方程的高效数值算法及误差分析

扫码查看
针对变密度Ericksen-Leslie方程提出了一种高效的数值算法。首先,通过自由能定义一个标量辅助变量(scalar auxiliary variable,SAV)并由此得到一个等价的新系统。其次,对新系统建立一个数值格式,其中Ginzburg-Landau惩罚函数通过SAV被显式处理从而将非线性项线性化。理论分析证明了格式的唯一可解性和无条件能量稳定性,并且通过严格的误差分析证明了格式的一阶收敛率。通过数值模拟验证了理论推导结果,并给出了奇点湮灭过程。所构造的格式在理论上和数值计算中都保持了预期的精度,并且在演化模拟中表现出良好的性能。
Efficient Numerical Algorithm and Error Analysis for the Ericksen-Leslie Equations with Variable Density
An efficient numerical algorithm is proposed for the Ericksen-Leslie equations with variable density.Firstly,by introducing a SAV(scalar auxiliary variable)with the free energy,an equivalent new system is obtained.Secondly,a numerical scheme of the new system is established where the Ginzburg-Landau penalty function is handled explicitly such that the nonlinear terms are linearized.Theoretical analysis has demonstrated the unique solvability and unconditional energy stability of the scheme,and the first-order convergence rate of the scheme has been proved by rigorous error analysis.The theoretical derivation results were verified by several numerical simulations,and the singularity annihilation process was presented.The constructed scheme maintains the expected accuracy in both theoretical and numerical calculations,and exhibits good performance in evolutionary simulations.

Ericksen-Leslie equationsvariable densitySAVunconditional energy stabilityerror analysis

张鑫、王旦霞、张建文、贾宏恩

展开 >

太原理工大学数学学院,山西晋中 030600

智能优化计算与区块链技术山西省重点实验室,太原 030000

Ericksen-Leslie方程 变密度 SAV 无条件能量稳定 误差分析

山西省科技合作交流专项项目山西省回国留学人员科研资助项目山西省基础研究计划国家自然科学基金面上项目

2021040411010192021-02920220302121112911872264

2024

重庆师范大学学报(自然科学版)
重庆师范大学

重庆师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.652
ISSN:1672-6693
年,卷(期):2024.41(3)