首页|基于电性参数和GA-BP神经网络的砂岩孔渗预测

基于电性参数和GA-BP神经网络的砂岩孔渗预测

扫码查看
以地表岩性复杂的四川盆地为采样区,基于神经网络可解决电性参数与储层物性参数之间非线性映射问题的优势性能,讨论低孔低渗致密储层的砂岩孔渗预测方法.以密度、电阻率和极化率等电性参数作为网络模型的输入参数,利用遗传算法(GA)对BP神经网络(BPNN)的权值和阈值进行优化,进而建立并训练GA-BP神经网络模型.与传统的多元回归法相比,GA-BP神经网络模型的孔渗预测实验结果更优.
Prediction of Sandstone Porosity and Permeability Based on Electrical Parameters and GA-BP Neural Network
Taking the Sichuan Basin with complex surface lithology as the sampling area, the neural network can be used to solve the problem of nonlinear mapping between electrical parameters and reservoir physical parameters, and the prediction method of sandstone porosity and permeability in low-porosity and low-permeability tight reser-voirs is discussed. The electrical parameters such as density, resistivity and polarizability were used as the input parameters of the network model, and the weights and thresholds of the BP neural network (BPNN) were optimized by genetic algorithm (GA), and then the GA-BP neural network model was established and trained. Compared with the traditional multiple regression method, the results of the porosity prediction experiment of the GA-BP neu-ral network model are better.

electrical parameterBP neural networkGAsandstoneporositypermeability

阮家驹、向葵、童小龙、王星皓、何方

展开 >

长江大学 地球物理与石油资源学院,武汉 434023

电性参数 BP神经网络 遗传算法 砂岩 孔隙度 渗透率

国家自然科学基金面上项目国家自然科学基金青年基金

4217408342204079

2024

重庆科技学院学报(自然科学版)
重庆科技学院

重庆科技学院学报(自然科学版)

影响因子:0.329
ISSN:1673-1980
年,卷(期):2024.26(2)
  • 17