首页|基于熵和SVM算法的DDoS攻击检测

基于熵和SVM算法的DDoS攻击检测

扫码查看
针对软件定义网络(SDN)易受分布式拒绝服务(DDoS)攻击这一缺陷,提出基于熵和支持向量机(SVM)算法的DDoS攻击检测方法.在对网络中的流信息进行熵值检测时,若熵值无法判断,则从Packet-In事件中解析出所需特征值,并运用SVM算法分类预测DDoS攻击状态.应用Mininet模拟器和RYU控制器建立模型进行仿真检测,检测精度较高,抵御DDoS攻击的实时性良好.
DDoS Attack Detection Based on Entropy and SVM Algorithm
In response to the vulnerability of Software Defined Network (SDN) to Distributed Denial of Service (DDoS) attacks, a DDoS attack detection method based on entropy and Support Vector Machine (SVM) algorithm is proposed. When detecting the entropy value of flow information in the network, if the entropy value cannot be determined, the required feature values are parsed from the Packet-In event, and then SVM algorithm is used to classify and predict the DDoS attack status. Mininet simulator and RYU controller are applied to establish a model for simulation detection. The result shows that the detection accuracy is high and the real-time resistance to DDoS attacks is good.

entropySupport Vector MachineSDNDDoSMininet simulator

毛宇、高刃

展开 >

湖北汽车工业学院 电气与信息工程学院,湖北 十堰 442002

支持向量机 软件定义网络 分布式拒绝服务 Mininet模拟器

湖北省教育厅科学技术研究计划重点项目(2021)

D20211802

2024

重庆科技学院学报(自然科学版)
重庆科技学院

重庆科技学院学报(自然科学版)

影响因子:0.329
ISSN:1673-1980
年,卷(期):2024.26(2)
  • 18