首页|基于改进YOLOv5的安全帽检测方法

基于改进YOLOv5的安全帽检测方法

扫码查看
针对现有安全帽检测方法普遍存在的复杂场景下小目标检测效果差、容易出现错检漏检情况、鲁棒性较低等问题,提出基于改进YOLOv5的安全帽检测方法.在主干网络中添加SimAM注意力机制,使模型在不额外增加参数的前提下对三维特征点的不同重要性进行表征和强化;在颈部网络中增加小目标检测层,以丰富目标细粒度信息;使用Decoupled-Head代替原模型的YOLOHead模块,将分类、回归任务分离进行.实验结果表明,该方法的平均精度均值达到93.17%,能够满足复杂场景下的安全帽检测要求.
Safety Helmet Detection Method Based on Improved YOLOv5
In view of the common problems of existing safety helmet detection methods in complex scenes, such as poor detection effect of small targets, prone to misdetection and omission, low robustness,etc., a safety helmet de-tection method based on improved YOLOv5 was proposed. By adding SimAM attention mechanism to the backbone network, the model can characterize and strengthen the different importance of 3D feature points without adding ad-ditional parameters. A small target detection layer is added to the neck network to enrich the fine-grained informa-tion of the target. and Decoupled-Head is used instead of the YOLOHead module of the original model to carry out the classification and regression tasks separately. The experimental results show that the average accuracy of this method is 93.17%, which can meet the requirements of safety helmet detection in complex scenes.

YOLOv5safety helmet detectionsmall targetattention mechanismfine grained information

张家旗、杨波、郭帅龙、马海娟、杨鑫

展开 >

重庆科技学院 电气工程学院,重庆 401331

YOLOv5 安全帽检测 小目标 注意力机制 细粒度信息

重庆市科技局自然科学研究项目

CSTC2020JCYJ-MSXM0774

2024

重庆科技学院学报(自然科学版)
重庆科技学院

重庆科技学院学报(自然科学版)

影响因子:0.329
ISSN:1673-1980
年,卷(期):2024.26(2)
  • 22