首页|基于蚁群算法的车辆状态疲劳特征优化研究

基于蚁群算法的车辆状态疲劳特征优化研究

扫码查看
针对疲劳驾驶引起的道路交通安全问题,提出一种改进蚁群优化(IACO)算法对车辆状态疲劳特征进行优化.将特征选择问题转化为全连接的无向图,引入Fisher分数与最大信息系数来提高搜索效率、降低特征冗余度.从车辆状态参数中提取疲劳特征,利用IACO算法对疲劳特征进行优化,得到最优疲劳特征子集.实验结果表明,IACO算法的SVM分类准确率为85.6%、KNN分类准确率为83.2%,均高于其他常用特征优化算法的分类结果,说明IACO算法对疲劳特征的优化性能高于其他常用特征优化算法.
Optimization of Vehicle State Fatigue Feature Based on Ant Colony Algorithm
A modified ant colony optimization (IACO) algorithm is proposed to optimize the fatigue characteristics of vehicle states in response to road traffic safety issues caused by fatigue driving. The feature selection problem is transformed into a fully connected undirected graph and fisher scores and maximum information coefficients are in-troduced to improve search efficiency and reduce feature redundancy. Fatigue features are extracted from the vehi-cle state parameters when drivers are driving and the fatigue features are optimized using the IACO algorithm, and thus the optimal subset of fatigue features are obtained. The experimental result shows that the SVM classification accuracy of fatigue features optimized by the IACO algorithm is 85. 6%, and the KNN classification accuracy is 83.2%, both of which are higher than the classification results of other commonly used feature optimization algo-rithms. This indicates that the optimization performance of the IACO algorithm on fatigue features is higher than that of other commonly used feature optimization algorithms.

traffic safetyfatigue drivingant colony algorithmfeature selection

陈智能、李作进、冯世霖、史蓝洋、曹亚男、贺学乐

展开 >

重庆科技学院 电气工程学院,重庆 401331

交通安全 疲劳驾驶 蚁群算法 特征选择

重庆市教委科技重大项目重庆市自然科学基金&&

KJZD-M202301502CSTC2021YCJH-BGZXM0071CSTC2020JCYJ-MSXMX0927

2024

重庆科技学院学报(自然科学版)
重庆科技学院

重庆科技学院学报(自然科学版)

影响因子:0.329
ISSN:1673-1980
年,卷(期):2024.26(2)
  • 29