首页|基于改进DDPG算法的WSN优化策略研究

基于改进DDPG算法的WSN优化策略研究

扫码查看
DDPG算法是Actor-Critic和DQN算法的结合体,作为目前深度强化学习中最为经典的算法之一,被广泛应用于WSN.针对 DDPG 算法训练效率低、收敛速度慢、同步误差大等问题,提出一种基于加权信息熵的深度确定性策略梯度算法.该算法提前对训练数据进行权重分配,根据权重比例训练数据,并将结果通过神经网络集成.实验结果表明,相较于DQN和DDPG算法,WIE-DDPG算法的训练效率较高、收敛速度较快、同步误差较小.
Research on WSN Optimization Strategy Based on Improved DDPG Algorithm
Deep Deterministic Policy Gradient(DDPG)is a combination of Actor-Critic and DQN algorithms.As one of the most classic algorithms in deep reinforcement learning,DDPG algorithm is widely used in wireless sensor networks(WSN).A weighted information entropy depth deterministic policy gradient(WIE-DDPG)algorithm is proposed to solve the problems of DDPG algorithm such as low training efficiency,slow convergence speed and large synchronization error.The algorithm assigns weights to the training data in advance,trains the data according to the weight ratio,and integrates the results through neural networks.The experimental results show that compared with DQN and DDPG algorithms,WEI-DDPG algorithm has higher training efficiency,faster convergence speed and lower synchronization error.

DDPGActor-CriticDQNdeep reinforcement learningWSNWIE-DDPG

李泽山、郭改枝

展开 >

国家林业和草原局信息中心,北京 100714

内蒙古师范大学 计算机科学技术学院,呼和浩特 010022

DDPG Actor-Critic DQN 深度强化学习 WSN WIE-DDPG

内蒙古自治区自然科学基金项目&&&&内蒙古自治区关键技术攻关计划项目

2020MS060292020LH060092021LHMS060132020GG0165

2024

重庆科技学院学报(自然科学版)
重庆科技学院

重庆科技学院学报(自然科学版)

影响因子:0.329
ISSN:1673-1980
年,卷(期):2024.26(3)
  • 8