首页|一种改进YOLOv7-GCA的车型快速识别方法

一种改进YOLOv7-GCA的车型快速识别方法

扫码查看
针对道路车流量大、车型识别速度慢等问题,提出了一种改进YOLOv7-GCA的车型快速识别方法.首先,采用参数量更小、检测速度更快的轻量化卷积GhostConv替换网络中的普通卷积Conv,以提高车型识别速度;其次,为了保证模型的识别精度,在进入颈部前引入CA注意力机制模块.实验结果表明,YOLOv7-GCA模型在保证识别精度的前提下,减少了模型的参数量和复杂度,提高了车型识别速度.
A Fast Identification Method for Vehicle Model Based on Improved YOLOv7-GCA
Aiming at the problems of high road traffic flow and slow model identification,a fast identification method for vehicle model based on improved YOLOv7-GCA is proposed.Firstly,the lightweight GhostConv with smaller parameter count and faster detection speed is used to replace the ordinary convolutional Conv in the network to im-prove the speed of vehicle model identification;secondly,in order to ensure the recognition accuracy of the model,the CA attention mechanism module is introduced before entering the neck.The experimental results show that the YOLOv7-GCA model reduces the number of parameters and complexity of the model and improves the vehicle mod-el recognition speed while ensuring the identification accuracy.

YOLOv7lightweightGhostConvCA Attentional Mechanism

斯洪云、苏盈盈、邓圆圆、阎垒、杨浩军

展开 >

重庆科技大学 电气工程学院,重庆 401331

YOLOv7 轻量化 GhostConv CA注意力机制

重庆市教育委员会科学技术研究项目重庆科技大学硕士研究生创新计划项目&&重庆科技大学本科生创新计划项目

KJQN202101510YKJCX2220419YKJCX22204082023010

2024

重庆科技学院学报(自然科学版)
重庆科技学院

重庆科技学院学报(自然科学版)

影响因子:0.329
ISSN:1673-1980
年,卷(期):2024.26(3)
  • 9